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This paper explores the interplay between social structure and economic action by examining some of the evolutionary
dynamics of an emergent network that coalesces into a small-world system. The study highlights the small-world

system’s evolutionary dynamics at both the macro level of the network and the micro level of an individual actor. This dual
analytical lens helps establish that, in competitive and information-intensive settings, a small-world system could be a highly
dynamic structure that follows an inverted U-shaped evolutionary pattern, wherein an increase in the small-worldliness of
the system is followed by its later decline as a result of three factors: (1) the recursive relationship between the evolving
social structure and individual actors’ formation of bridging ties, which eventually homogenizes the information space and
decreases actors’ propensity to form bridging ties, creating a globally separated network; (2) self-containment of the small-
world network, or increasing homogenization of the social system, which makes the small world less accepting of and less
attractive to new actors, thereby limiting formation of bridging ties to outside clusters; and (3) fragmentation of the small-
world network, or the small-world system’s inability to retain current clusters. The study uses data on interorganizational
tie formation in the global computer industry in the period from 1996 to 2005 to test the hypothesized relationships.
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Introduction
Studies in organization theory and sociology have long
recognized the importance of social structure in shap-
ing the behaviors and outcomes of social actors (e.g.,
Baker 1984, Granovetter 1985). It is now well estab-
lished that the concrete patterns of social interactions
in which actors are embedded have an impact on the
actors’ behaviors and outcomes in a variety of contexts
(Ahuja 2000; Fernandez and Fernandez-Mateo 2006;
Galaskiewicz et al. 2006; Gulati 1999, 2007). As a con-
sequence, actors’ embeddedness in the social structure
and the characteristics of the social structure itself have
become perennial subjects of organizational and socio-
logical research. In recent years, more researchers have
come to focus on one particular class of social structure:
small-world systems.

Rooted in the early conceptualizations of Frigyes
Karinthy (1929) and the six-degrees-of-separation exper-
iment conducted by Stanley Milgram (1967), ideas
related to small-world systems have received renewed
scholarly attention in the wake of recent advances in
analytical formulations of this phenomenon (Watts and
Strogatz 1998). In essence, the presence of small-world
architecture in a social system endows members of
even relatively sparse networks with a unique capacity

for connectivity and coordinated action. Because small
worlds display the combination of high interconnectivity
among actors’ immediate contacts and the presence of
some connections spanning those clusters of high con-
nectivity, social actors in these systems are much more
able to reach other actors in the social space through a
relatively small number of intermediaries.

A number of factors have led to the growing schol-
arly attention to small-world systems. First, small worlds
have been found to characterize a wide variety of social
settings, ranging from patterns of scientific collabo-
ration (Newman 2001) to corporate board interlocks
(Davis et al. 2003). Second, not only are small worlds
now considered ubiquitous social structures, but—in line
with extant findings that social structure shapes eco-
nomic action—they are also increasingly recognized
as robust drivers of individual and collective action
(e.g., Uzzi and Spiro 2005). However, despite the ubiq-
uity of small-world systems and the growing body of
research on their importance for social action and out-
comes, there is a dearth of knowledge regarding the
evolutionary dynamics underlying their development and
transformation.

In contrast to recent research that has analyzed small-
world systems at a macro-social level and focused
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primarily on these networks’ global properties, such as
clustering coefficient and average path length (Davis
et al. 2003, Rosenkopf and Schilling 2007, Uzzi and
Spiro 2005), our study focuses on the evolution of
small worlds and adopts a multilevel dynamic approach.
Consistent with previous applications of this approach
in social and economic sciences (Doreian and Stok-
man 1997, Gulati 1995, Gulati and Gargiulo 1999,
Jackson and Rogers 2007), this stance allows us to
consider the evolutionary dynamics of small worlds
at two distinct levels: the macro-social level, or net-
work level of global properties of small worlds, and the
micro-social level, or actor level of behavioral trends
underlying these global features. The macro- or network-
level lens enables us to better understand how the
micro-level actions of social actors are guided by the
global properties of an evolving small-world system.
Analyzing micro-level behavioral trends, in turn, focuses
on the actions of individual actors, which result in
the formation of social ties and agglomerate into the
macro-level social structures of small worlds. This mul-
tilevel approach allows us to elucidate the evolution of
small-world networks and to explore one of their qual-
ities that has not yet been considered, namely, their
highly dynamic nature. Specifically, we show that in
competitive and information-intensive social systems, a
small-world system may follow an inverted U-shaped
evolutionary pattern, wherein the formation stage is
marked by an increase in small-world properties but
is eventually followed by a period of rapid decline in
small-world topology.

Conceiving of small-world structures as dynamic
social systems that follow intricate evolutionary trajec-
tories is important for several reasons. First, because
there is evidence that actors reap substantial benefits by
residing in small-world structures (Uzzi and Spiro 2005,
Schilling and Phelps 2007), understanding the dynam-
ics of small worlds can offer valuable insight into the
different opportunities and constraints these structures
offer at various levels of their evolutionary progression.
Depending on whether and to what extent the social sys-
tem takes on the features of small-world architecture,
the surrounding social context can have different and
far-reaching implications for the behavior and outcomes
of social actors. This study, therefore, lays the founda-
tion for exploring the role of the dynamics of small-
world structures across multiple social systems, as well
as over time within a single social system. More broadly,
this inquiry responds to the growing calls for the inves-
tigations of the dynamics of social structure (Doreian
and Stokman 1997). Second, by scrutinizing the inter-
twined relationship between the micro-level actions of
social actors and the macro-level social structures of
small worlds, we explore the mechanisms underlying the
observed small-world evolutionary dynamics. We show

that the actions of individual actors, guided by the evo-
lution of the macro-level social structure, both contribute
to the emergence a small-world system and plant the
seeds of its decline. The micro-level actions not only can
directly disrupt the small-world system but also can alter
the social structure in a way that further constrains the
continuity of small worlds, generating a self-reinforcing
cycle of structure and action. This dual-level, micro-
macro analytical lens helps us unveil the origins of social
structures, which derive from and subsequently shape
the micro-level actions of individual actors (Baker and
Faulkner 2009, Coleman 1990, Giddens 1984).

We conducted our investigation on a sample of orga-
nizations in the global computer industry by tracking
network-related patterns resulting from their interor-
ganizational ties over the period from 1991 to 2005.
Interorganizational ties reflect a wide range of collab-
orative activities among organizations, ranging from
joint product- and technology-development partnerships
to marketing agreements. Our sample was particularly
appropriate for exploring the question at hand for sev-
eral reasons. First, interorganizational ties are ubiqui-
tous and also critical for organizations in the computer
industry. Second, this setting provided us with the rare
opportunity to observe a dynamic social network over
time, as such ties have been proliferating for a num-
ber of years. Third, most tie formations are announced
publicly, providing a rich pool of historical data on the
formation of interorganizational networks and their par-
ticipants at multiple points in time. It is worth not-
ing that the features of the global computer industry
and the collaborative activity within it described above
make this setting akin to several other high-technology
sectors, including biotechnology and semiconductors,
which have been analyzed extensively in recent years
(e.g., Owen-Smith and Powell 2004, Powell et al. 2005,
Rowley et al. 2000).

Evolution of Small Worlds
The Micro-Level or Actor-Level Dynamics of
Small Worlds
Recent studies advanced a rigorous analytical formula-
tion of the small-world effect using two key attributes:
local clustering and global average path length (Watts
and Strogatz 1998). The local clustering coefficient is
measured as the number of actual links connecting all
neighbors of a focal actor with one another, divided by
the number of all possible ties among those nodes. The
measure is subsequently averaged over all the actors in
the network and shows whether one actor’s direct con-
tacts typically also know each other. The average path
length, in turn, is defined as the average of all the short-
est distances calculated as the lowest existing number
of links between any two actors. This measure shows
how far an actor is, on average, from everyone else in



Gulati, Sytch, and Tatarynowicz: Exploring the Dynamics of Social Structure
Organization Science 23(2), pp. 449–471, © 2012 INFORMS 451

a social domain. Using these two dimensions, one can
effectively distinguish small-world networks from both
random networks, which have low clustering and low
average path length, and regular networks, which have
high clustering and high average path length.1 Interpo-
lating between the qualities of the two, small worlds thus
offer a unique combination of high local clustering and
low global separation.

In our context, the dual macro-micro analytical appro-
ach requires considering small worlds’ global properties
of high clustering and low average path length in con-
junction with the underlying micro-level dynamics of
tie formation between actors. The role of microdynam-
ics in the formation of social structure can be observed
clearly in a small-world system arising from interorgani-
zational ties. At the foundation of such a system are the
myriad actions of individual organizations. When pursu-
ing such ties, organizations strive for valuable resources
and aim to ensure survival within the constraints of the
social structure (Gulati 1998, Baum et al. 2003, Powell
et al. 2005).2 These individual actions by disparate
actors eventually cumulate into macro-social structures
comprising complex interorganizational connections that
enable the flow of information and other resources. The
resultant social structure of interorganizational ties has
been shown to be quite influential in shaping the tie for-
mation by individual actors (Gulati and Gargiulo 1999,
Powell et al. 1996). Two key actor-level processes are
likely to explain the emergence of a small world in
this context: (1) the formation of local ties that connect
pairs of contacts located within the same network com-
munity and thus create dense clusters of tightly inter-
connected actors, and (2) the forging of bridging ties
between actors from different clusters, which bind these
clusters together into what becomes the small world
(cf. Granovetter 1982).

Local interorganizational connections that culminate
in tightly linked clusters emerge for a variety of rea-
sons. First, because in most markets information regard-
ing the availability, reliability, and resource profiles of
potential partners is not perfectly distributed, many orga-
nizations tend to economize in their search for partners
by selecting those with whom they have some familiar-
ity, either directly or indirectly, through prior partners
(e.g., Gulati and Gargiulo 1999, Shipilov and Li 2012,
Zaheer et al. 2010). Local partnering enables organi-
zations to effectively tap into a network that generates
referrals to and background information on prospective
partners. Second, densely connected clusters create rep-
utational lock-ins, or situations in which noncooperative
behavior may be costly because of the increased circu-
lation of reputational information and the greater likeli-
hood of collectively imposed social sanctions (e.g., Greif
1993). Finally, the formation of local ties can also occur
as a result of technological similarity among organiza-
tions, in cases where organizations are aiming to scale

up similar resource endowments or pursue incremental
innovations (Wang and Zajac 2007).

The second key actor-level process in the genera-
tion of small worlds results from the propensity of
at least some organizations to form bridging ties that
run between clusters. Prior research has proposed that
tightly connected clusters circulate mostly redundant
resources and information, eventually becoming immune
to the inflow of new information. In such contexts, bridg-
ing ties between clusters provides actors with efficient
access to nonredundant information and novel resources
that are typically unavailable through local ties (Burt
2005, Granovetter 1982). The bulk of the early research
on the benefits of bridging ties concerned individuals,
but a similar dynamic has recently been suggested for
organizations entering into ties with other organizations
(McEvily and Zaheer 1999, Ozcan and Eisenhardt 2009,
Zaheer and Bell 2005, Rosenkopf and Padula 2008).
The formation of bridging ties can enable organiza-
tions to engage in a broader informational search, tap-
ping the knowledge pools of diverse clusters through
conversations among scientists, flows of personnel, and
exchange of intellectual property that occur in interor-
ganizational ties. The information, knowledge, and other
resources that organizations acquire through such ties
are likely to be nonredundant and valuable because they
are derived from otherwise disconnected communities
of actors. Incentives for organizations to pursue bridg-
ing ties are particularly robust in highly competitive
and information-intensive settings, where the survival of
actors rests on their ability to continuously access and
recombine flows of diverse information, knowledge, and
other resources (Eisenhardt and Tabrizi 1995, Lin 2001,
Rowley et al. 2000). Within such settings, the exist-
ing macro-level social structure serves as a particular
enabler of the formation of bridging ties when the dis-
tinct clusters of the social space serve as pockets of
unique knowledge and creative insight, thereby allowing
for the effective recombination of diverse inputs.

The formation of local and bridging ties is likely to
shape the small-world architecture of the interorganiza-
tional system in two consequential ways. First, the for-
mation of local ties with partners of current partners is
likely to drive the emergence of dense and tight pockets
of local connectivity, thus resulting in a highly clustered
network. However, because interorganizational networks
are typically sparse in that each organization has few ties
relative to the number of firms in the industry (Davis
et al. 2003, Powell et al. 2005), the network is unlikely
to aggregate into one big cluster. It is, instead, likely to
remain disaggregated as multiple smaller clusters. Sec-
ond, the formation of bridging ties between these emer-
gent clusters is likely to create shortcuts through the
social space, thereby ensuring a high degree of global
interconnectivity. In such a globally interconnected sys-
tem, actors can reach one another through relatively
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short network paths. By virtue of the concomitant for-
mation of many local ties and some bridging ties, we can
thus expect to see the emergence of a robust small world
that combines a high degree of actor’s clustering with
relatively short social distances between those actors.

The Decline in the Formation of Bridging Ties and
the Decline of the Small-World Architecture
Although these dynamics are likely to result in the
formation of a robust small-world system, next we
show how the changing macro-level social structure and
the concomitant knowledge landscape of the industry
evolved from being drivers of bridging tie formation
to significant constraints upon it, planting the seeds of
the decline of the system’s small-worldliness. Because
this social structure holds a plethora of entrepreneurial
opportunities for knowledge recombination and the
industrial landscape holds a strong incentive for such
recombination, the formation of bridging ties can emerge
and continue as one of the primary trends in collabora-
tion. Under these structural conditions, the benefits that
arise from bridging ties would be typically unavailable
through other means in an emerging small world because
local ties generate flows of largely redundant knowledge.
Even if certain resource flows eventually reach every
actor in the network, bridging ties can offer the bene-
fits of speed and timeliness of access to this resource
base. Thus, just as local search encourages organiza-
tions to form local ties, the advantages of access to
diverse resources, knowledge, and information encour-
age at least some organizations to enter into bridg-
ing ties. As a result, although an early system may
be composed of cohesive clusters of organizations that
constantly grow in size and density owing to repeated
formation of ties within them, with time the system
also experiences an increased formation of ties span-
ning unoccupied network spaces between those clusters
(Baum et al. 2003).

Note that the above account of organizations’ pur-
suing bridging ties does not suggest that organizations
astutely discern the structural gaps in a network struc-
ture and form bridging ties strictly on this basis. Instead,
it is the quest for unique skill sets, information, and
knowledge—hints of which organizations may discern
in remote clusters through monitoring other firms’ prod-
uct development efforts, patent applications, and grants,
as well as interorganizational tie formation, among other
activities—that drives the formation of bridging ties. As
a small world takes form, actors within it are likely to
reap benefits from the creative potential arising from
the superior movement and recombination of informa-
tion throughout the system (Schilling and Phelps 2007).
Consequently, we expect a locally clustered but globally
tight-knit small-world system to become the center of
gravity in a larger network of organizations and therefore
to grow rapidly through the attachment of new clusters.

With the growing formation of bridging ties, we
expect a new evolutionary dynamic to emerge. Bridging
ties may eventually saturate the space between clusters,
making clusters more and more interconnected. Work-
ing as pipes for the flows of information among clus-
ters (Podolny 2001), existing bridges can thus gradually
familiarize actors with the information and knowledge
pool of other clusters and thus allow them to internal-
ize some of that knowledge. As a result of this pro-
cess, not only does the existing knowledge and resource
base become more accessible to all network participants,
but the new knowledge generated within clusters may
become more homogeneous as it builds on increasingly
similar antecedent knowledge bases as well. On a more
general level, this logic resonates with recent studies
suggesting that knowledge exchange is driven by and
subsequently shapes the existing knowledge base in the
industry (Baum et al. 2010, Cowan and Jonard 2009).
More specifically, this dynamic parallels the findings of
the computational work that showed that the decreas-
ing path length in the network—by facilitating stronger
knowledge exchange, sharing, and, as a result, the devel-
opment of a common knowledge base—squeezes diver-
sity out of the system (Lazer and Friedman 2007).

As a result, the increased information flows between
clusters reduce the unique value of each cluster as a
contributor of heterogeneous information. This reduc-
tion, in turn, diminishes the unique information qualities
of the small world because the information, knowl-
edge, and resources that are being circulated between
clusters become more and more redundant. Structurally,
the system undergoes a coalescence of clusters, thereby
coming to resemble an agglomerated whole. As the net-
work becomes less and less structurally differentiated
(cf. Gulati and Gargiulo 1999, White 1981), the ben-
efits of forming a new bridging tie to other clusters
within the small-world system diminish. More generally,
at the same time that the informational benefits obtained
through such ties decline, bridging will still entail the
high risks and costs of forgoing the comfort and safety
of partnering with current partners or partners of those
partners.

The less structurally differentiated social system will
thus begin to emerge as a substantial constraint on the
formation of bridging ties. Under these conditions, the
decline in the small-worldliness of the system occurs
because as fewer new bridging ties enter the system and
old bridging ties decay, the actors become more sepa-
rated globally. It is essential to note that it is unlikely that
the reversal in bridging tie formation will immediately
restore the heterogeneity of clusters. The coalescence of
clusters occurs over time, gradually reducing the hetero-
geneity of knowledge and resources across them. As this
process unfolds, the clusters are also likely to develop
an increasingly similar antecedent knowledge base. Fol-
lowing the decreased propensity of firms to form bridges
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and the reduction in the knowledge flow across clusters,
it is therefore likely to take time for firms in clusters to
restore their unique innovative base and revert to a truly
heterogeneous state.

As a result of the emergent macro-level structural con-
straints on the formation of bridging ties, the resulting
social structure is likely to retain high clustering, but
it will be unable to preserve one of the key defining
qualities of a strong small world: a low average path
length. Using the networks of partnerships in biotech-
nology, Powell et al. (2005) hinted at a similar dynamic,
whereby firms ended up connecting to other actors
through multiple independent pathways, forged in pur-
suit of diversity. We take this idea a step further and
suggest that the initial pursuit of bridging ties eventually
eliminates the very diversity that these ties were meant
to harness, thereby translating into a vicious recursive
relationship between structure and action.

Self-Containment and the Fragmentation of
Social Structure
It is essential to remember that a small-world system
represents the biggest connected component in a greater
network. In other words, although it represents the center
of gravity in a network, the small-world system resides
in a broader network space of isolated actors and smaller
components. The dynamics of bridging tie formation
as previously described can work in concert with the
structural dynamics related to the changing interactions
between the small-world system and the greater outer
network, as well as the changing prominence of the
small-world system within the outer network. These con-
comitant structural dynamics may create a strong self-
reinforcing cycle that further destabilizes a small world.

Along with the decreasing diversity of information, an
increasingly closed small-world network can develop a
less diverse composition of actors and thus also beget
strong shared norms of behavior and common men-
tal models (Porac et al. 1995). Cognitive similarity,
the self-reinforcing structural homogeneity of actors,
and the possibility of sanctions against deviant behav-
ior are all typical characteristics of increasingly closed
systems. These characteristics, in turn, are likely to
limit the accessibility of the small world to outside
organizations, as the increasingly homogeneous organi-
zations within the small world may accept fewer new-
comers (Zaheer and Soda 2009). This dynamic mirrors
some well-established findings documenting inertia and
homophilous preferences in partnering (Li and Rowley
2002, McPherson et al. 2001). In addition, the growing
lack of diversity, possibly coupled with the decreasing
innovation potential of the actors within the small world,
can also make the network less attractive to newcom-
ers, leading them to pursue collaborations beyond the
small-world system. Taken together, the emerging con-
straints of the social structure can result in the decreased

acceptance of outsiders and decreased incentives for out-
siders to join the small-world network and are likely
to lead to what we refer to as the self-containment of
small worlds. This trend manifests in the decreased for-
mation of bridging ties between the occupants of the
eroding small-world network and those of the outside
network components, resulting in the small-world net-
work becoming increasingly isolated from the greater
outer network.

As the declining small-world network becomes more
self-contained, the decreased innovative potential of
organizations trapped within it can ultimately result
in fragmentation. Because participation in disconnected
and likely more diverse network components outside the
core small world may carry more salient benefits for
organizations compared with the prospects of staying in
the eroding and increasingly homogenous small-world
system, the formation of new bridging ties within the
declining small world slows down. Thus, as older bridg-
ing ties decay, some clusters eventually disengage from
the core system. The process of fragmentation, wherein
a small world ceases to be the center of gravity for the
larger network, is likely to further damage the innova-
tive stock of the small world, additionally contributing
to the decline of its complex structure.

In sum, we expect small worlds to be highly dynamic
systems whose evolutionary trajectories result from the
reciprocal interaction between the evolving social struc-
ture of the industry and the micro-level organizational
actions it elicits. An emergent small-world structure,
where network clusters represent pockets of hetero-
geneous skill sets and knowledge, is likely to offer
numerous entrepreneurial opportunities for knowledge
recombination, thereby stimulating the formation of
bridging ties. As the small-world structure matures,
however, the excessive formation of new bridging ties
gradually homogenizes the knowledge landscape across
clusters, thereby eliminating the key benefits of diversity
stemming from bridging ties. The subsequent decline in
formation of bridging ties, which marks a major transi-
tion in the key behavioral dynamic that forged a small
world in the beginning, contributes to the reduction
of the small-worldliness of the system. Following the
decline in the formation of new bridges and the decay
of old bridges, the small-world system can be expected
to lose its high connectivity, wherein actors become sep-
arated by longer network paths.

Two parallel dynamics further reinforce this trend.
First, as the small-world clusters become more intercon-
nected, the system gradually transforms into a collection
of “homophilous” actors who tap into an increas-
ingly homogenized pool of information, knowledge, and
resources, which drives their decreased innovative poten-
tial. This contributes to the growing self-containment
of the system or its decreased attractiveness to and
increased impenetrability by newcomers entering the
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Figure 1 Increasing and Declining Small-Worldliness of the Network

(A) (B) (C)

system from outside. These circumstances therefore
limit the ability of actors within the small world to form
bridging ties to outside clusters. Second, the network
undergoes gradual fragmentation, whereby entire clus-
ters of organizations are likely to depart as the deterio-
rating small world loses the ability to serve as the center
of gravity of an entire system of cooperating organiza-
tions. Taken together, these dynamics lead us to predict
an inverted U-shaped evolution for small worlds, where
the increase in the small-worldliness of the system is
followed by its later decline.

We illustrate our prediction schematically in Figure 1.
Panel A shows three initially disjoint network compo-
nents. In panel B, these components become denser as
a result of the formation of local ties. They also connect
to one another through bridging ties, thus resulting in a
mature small world. As the increased formation of bridg-
ing ties produces a homogeneous information space, it
results in (i) a decreased formation of new bridging ties,
leading to greater actor separation; and (ii) network frag-
mentation and self-containment, wherein one cluster dis-
connects from the small world while no new actors enter
the system from outside (Figure 1, panel C).

Corresponding Developments in the
Computer Industry
It is important to note that the evolutionary dynamics
of the firms’ partnership network are reinforced by the
evolution of the technological landscape of the com-
puter industry during the period of study. By the early
1990s, the vertically integrated industry of the old main-
frames and minicomputers, in which several dominant
players delivered complete end-to-end solutions, was
largely replaced by a vertically disintegrated structure.
This “new computer industry” (Grove 1996) consisted
of a large variety of independent and technologically
heterogeneous companies that focused on the design
and production of a range of different but compatible
computing technologies or components. The new indus-
trial paradigm of the computer industry emerged along-
side two distinct collaborative trends. On the one hand,

many increasingly specialized firms began to collabo-
rate within highly specific technological niches (e.g.,
microprocessors, storage devices, networking compo-
nents, and system software), thus triggering the forma-
tion of local ties and the emergence of densely inter-
connected network neighborhoods. Rather than offering
complete solutions, these firms sought to deliver prod-
ucts and applications within their own market niches.
Echoing this trend, studies of the computer industry
in the 1990s documented a rapid rise in collaboration
among sellers of substitutes (Bresnahan 2000). As a
result of these local collaborative linkages, the industry
began to witness the emergence of pockets of produc-
tion and innovation that quickly crystallized into distinct
local clusters of the social system.

Notwithstanding the strong technological underpin-
nings of local ties, firms appeared to select into clusters
in ways that transcended purely technical involvement.
By creating strong relationships with other community
members, firms could deploy exchanges that were char-
acterized by high levels of trust and reciprocity, collec-
tive identify, and mutual support, inducing them to share
their proprietary resources and know-how (Garud et al.
2002). Given the risks of opportunism, strong cohesive
relationships helped protect the community’s technologi-
cal viability by conveying key reputational insights about
other firms and, if necessary, mobilizing collective action
against those who failed to cooperate (Gomes-Casseres
1996). Thus, the formation of local ties, marked by
a high degree of technological and social relatedness
of the partners, facilitated the emergence of dense and
cohesive clusters in the growing small-world network.3

The vertically disintegrated market structure of the
1990s also produced the need for extensive collabora-
tion among the producers of complementary technolo-
gies, leading them to forge ties with partners located
in other network clusters. Through these cooperative
bridging ties, some companies in the computer industry
assembled sets of complementary computer inputs—
such as microprocessors, memory and storage, network-
ing components, and software—into complete systems,
or platforms, on which users would build and run
applications (Malerba and Orsenigo 1996). Consider,
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for instance, the new client/server platform for com-
puter networks, which incorporated a wide variety
of complementary components, such as servers (e.g.,
Sun Microsystems), databases (e.g., Oracle), networking
software (e.g., Novell), and a range of client-side appli-
cations (e.g., Netscape Navigator or Microsoft Internet
Explorer). To guarantee their seamless interoperability,
companies had to agree on certain shared standards for
their products, such as the use of the same communica-
tion protocols (e.g., the TCP/IP protocol). This created
the need for a particularly entangled bridging collabo-
ration among firms residing in different technological
layers. To underscore the importance of this trend, a rep-
resentative of Microsoft noted, “In fact, the computer
industry would cease to function if developers of com-
plementary products that interact with one another in
technically complex ways could not talk about how those
products interact, now and in the future” (Bresnahan
2000, p. 9).

The formation of bridging ties could have been further
facilitated by the fact that numerous platforms that had
evolved by the mid-1990s (e.g., the dominant PC plat-
form or Apple Macintosh) were designed as modular and
open systems. These features made the individual sub-
components highly interchangeable and enabled them to
be designed independently by specialized firms. These
conditions, in turn, created a technological landscape
that was, for the most part, conducive to the extensive
formation of bridging relationships among the incum-
bents as well as to the attachment of entirely new clus-
ters of entrants into the industry. For example, while the
period’s most prominent computer maker, IBM, sourced
its key parts from a few incumbent vendors such as Intel
(microprocessors) and Microsoft (operating system), the
open architecture of the PC allowed users to substi-
tute these standards for other IBM-compatible modules
(Bresnahan and Greenstein 1999). In part, because of
the continuously expanding technological features and
capabilities of the PC platform, the core of the network
increasingly attracted new market entrants and stimu-
lated the expansion of the network. Taken together, these
technological trends reinforced the formation of local
and bridging ties, thereby contributing to the emergence
of the locally clustered and yet globally interconnected
small-world social structure of computer firms. This
small-world structure further was a center of attraction
for the outer network in the 1990s and absorbed a large
population of new entrants.

Following 2000, however, the social mechanisms that
led to the decline of the small-world system could also
have been reinforced by several concomitant techno-
logical trends. First, the collaboration and transfer of
knowledge among different clusters in the computer
industry in the 1990s led to the emergence of relatively
strong and self-contained technological platforms, such

as the PC, as well as some centrally sponsored uni-
versal technologies for distributed computing, such as
Java. Having grown out of cross-cluster collaboration,
these mature technological blocks saw rapidly declin-
ing benefits of continued bridging collaboration. The
arrival of Java, for instance, offered a particularly flex-
ible and cheap standard for interoperability and sys-
tem integration (Garud et al. 2002), thus decreasing the
demand for proprietary solutions and cross-technology
collaboration. Network clusters—many of which had
earlier represented valuable pockets of complementary
and innovative thought and had thus invited bridging
relationships—now reflected mature competition, much
of which was offering comparable solutions and pursu-
ing a similar client base. To complicate matters further,
most of the clusters were headed by a single leading
firm or a group of leading companies that, in striving for
overall market dominance, escalated cross-cluster com-
petition and further reduced the opportunities for bridg-
ing collaboration (Bresnahan 1999). These competitive
dynamics escalated as some companies, which were the
undisputed leaders of their technological clusters (e.g.,
Hewlett-Packard and Sun in the server cluster, Intel in
the chip cluster, and Microsoft in the operating system
cluster), began to expand control over multiple mar-
ket segments, thus triggering a departure from the dis-
tributed model of the late 1990s. As a result of these
developments, the computer industry became more con-
solidated, less permeable, and less technologically diver-
sified, thereby reducing the opportunities for bridging
collaboration.

Second, the declining benefits of bridging ties were
exacerbated by the rising costs and risks of such col-
laboration. The burst of the Internet stock bubble and
the failure of many corporate “breakthrough” plans of
the late 1990s resulted in a significant confusion in the
computer industry, possibly leading many companies to
revise their business models and collaboration strategies
(Perkins and Perkins 2001). Many of the bridging part-
nerships of the late 1990s either failed to deliver on their
promise or turned out to be dead ends (Datamonitor
2006). Under the changed environmental conditions,
those who survived were driven to embrace the new real-
ity by reducing now highly uncertain cross-cluster col-
laboration and reverting to established strategies based
on trust, long-term growth, and strong customer focus
(Riolli-Staltzman and Luthans 2001). In line with these
observations, some firms were beginning to increasingly
support innovation either in-house or together with their
users, rather than with complementary business partners
through bridging relationships (Chesbrough 2003).

Third, the pressures of competing substitutes and the
need to reduce market uncertainty could have driven
the firms in the computer industry into running self-
sustained platforms and made it harder for the firms
to form new cross-cluster bridging ties and to generate
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new integrative solutions, thereby stifling the creativ-
ity in the industry network. Key industry figures such
as Michael Dell argued that many companies were in
danger because “their business is fundamentally based
on things that people aren’t going to buy very much
of anymore” and that those parts of the industry were
driven “by reinventing what other people have already
invented” (Pimentel 2003, p. B1). Not surprisingly,
experts noted that the saturated computer market was
stagnating: “The corporate market has become a replace-
ment market 0 0 0 there is no reason to buy anything now.
They’ve bought everything they need” (Richtel 2000,
p. C8). As another manifestation of this trend, studies
of the computer industry at the time describe the notice-
able industry-wide shift away from searching for and
generating new creative solutions and toward a greater
emphasis on cost reductions and operating efficiencies
(Dedrick and Kraemer 2005). The homogenization of the
technological and product space emerged alongside the
increasingly more interconnected social structure, driv-
ing the diversity out of the production market.

In parallel with the coalescence of network clusters
and the increasing homogenization of the industry’s
knowledge base, the computer market in 2003–2005 saw
an injection of entirely new technological fields and
platforms beyond the core industry. These included, for
example, pervasive computing that extended the com-
puting paradigm to other domains and applications, such
as portable devices or multimedia (e.g., Roussos 2005).
Although these emerging innovations opened up vast
opportunities for new entrants, they also resulted in a
significant fragmentation of the industry network by
shifting the bulk of cooperative activity outside the core
of the network. Given the network’s stagnating core
and its more innovating periphery, many new entrants
as well as incumbents joined more peripheral network
components in search of better opportunities. Thus, the
homogenization of the knowledge base and the dimin-
ished benefits of cross-cluster bridging, coupled with the
increased uncertainty of such collaboration, likely led to
the decline of bridging activity in the system, an increase
in the average path length, and the subsequent erosion
of the small-world system. Furthermore, the increas-
ingly homogeneous and stagnating small-world core of
the network could thus result both in its relative imper-
meability to outsiders and in its loss of attractiveness
as the center of gravity for the larger network, lead-
ing to the network’s self-containment and fragmentation.
Taken together, these trends point to the coevolution-
ary dynamics of the social structure and the technolog-
ical landscape of the computer industry. More broadly,
they are consistent with the earlier research that empha-
sized the critical interdependence between the dynamics
of interorganizational networks and knowledge space in
different industries (e.g., Rosenkopf and Tushman 1998).

Data, Methods, and Analysis
Network Data
We track an evolving network of interorganizational
partnerships over 1990–2005. In this network, the nodes
are organizations and the links are the undirected,
unweighted partnership ties among those organizations.
Networks of interorganizational partnerships are con-
sidered to offer a particularly rich and representative
domain for the study of the embeddedness of eco-
nomic action and have thus been examined extensively
in prior studies (e.g., Gulati and Gargiulo 1999, Pow-
ell et al. 1996, Uzzi 1996). The computer industry,
in particular, is one sector that has seen a prolifera-
tion of interorganizational linkages in recent decades.
Because computer firms are constantly forging collabo-
rative linkages not only with one another but also with
firms from other industries, we expected to observe a
large connected network consisting of many different
organizations and ties. In addition, partnership networks
are typically sparse because alliance formation is risky
and costly. Global connectedness and a high degree of
sparseness are important conditions in our case because
it is only within such networks that the small-world
property can be analytically pursued (Watts 1999).

In accordance with prior research, we used partnership
data from Thomson Financial’s SDC Platinum database
(Casciaro 2003, Rosenkopf et al. 2001). In light of
extant empirical work suggesting that the formation of
interorganizational partnerships in the computer industry
was less frequent in the 1980s than in the next decade
(Gulati 1995, Hagedoorn et al. 2006), we left-censored
our data at 1991.4 To achieve a degree of high preci-
sion in analyzing our network and produce a more fine-
grained analysis of its temporal dynamics, we noted the
exact month and year of each partnership announcement
and traced the evolving network in half-year intervals.
Finally, because a small number of alliances in our sam-
ple consisted of more than two firms, we incorporated
them as sets of dyadic linkages (for a similar treatment,
see Stuart 1998).

Because in the computer industry, only roughly 1%
of all agreements reported by SDC have their precise
dissolution dates on record, we followed prior research
in modeling a five-year duration for a typical tie (Gulati
and Gargiulo 1999, Lavie and Rosenkopf 2006, Stuart
2000).5 Beginning with partnerships initiated in 1991,
we thus mapped ties into the partnership network, con-
ducting our analysis from 1996 onward, in half-year
increments. This process produced a total of 20 peri-
ods for which we created 20 snapshots of the evolving
social network. Given our focus on the global computer
industry, we included only partnerships in which at least
one partner was a member of the computer industry, as
indicated by its primary four-digit SIC industry code—
Computer and Office Equipment (SIC 3571–3579) and
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Electronic and Electrical Equipment (SIC 3612–3699).
Furthermore, the main partnership activity had to fall
within the computer industry according to its SIC code.
These sampling criteria led us to recreate a highly
dynamic network with 7,962 nodes between 1996 and
2005. The network grew from 374 companies in the
first half of 1996 to a peak size of 6,221 actors at
the beginning of 2004. Furthermore, not unlike other
social networks, our network was also “disjoint” in each
period as it consisted of multiple disconnected “com-
ponents.” Because a disjoint social network precludes
uniquely defining and measuring small worlds, small-
world studies tend to focus exclusively on features of
the main component (e.g., Davis et al. 2003, Uzzi and
Spiro 2005). We thus also focus on the main component,
which includes all actors connected to one another by
at least a single path of intermediaries.

Macro-Level Analyses of Small Worlds
With the main component including, on average,
N = 900 actors and k = 305 ties per actor, the net-
work remained both large and sparse over 1996–2005,
thus satisfying the basic requirement for small worlds
that N � k (Watts and Strogatz 1998). According to
extant research, identifying small worlds using a ran-
dom network baseline first entails estimating the ran-
dom network’s parameters of clustering coefficient C
and average path length L using the following theoretic
approximations: CR = k/N and LR = ln4N 5/ ln4k5.6

Using the ratios of real to random values, a small-world
system will show C/CR � 1 and L/LR ≈ 1 as a result
of having a much higher clustering coefficient than the
baseline random network but a roughly equal short aver-
age path length.

Averaged over 20 main components over 1996–2005,
the mean C/CR = 141068, which was significantly
greater than 1, suggesting that observed clustering dif-
fered substantially from the random clustering. The
mean L/LR = 1005 suggested that the average path
lengths for real and random networks were compara-
bly short. Taken together, these results suggested that,
on average, the network was both weakly separated
and highly clustered, indicating a small-world structure.
However, the standard deviations pointed to a relatively
high variation in the clustering coefficient (SD = 102042)
and average path length (SD = 0027) over time. This
variation suggests that the small-world property of the
evolving network might not be constant over time.

Over time, our network showed a roughly constant
average degree k but a highly variant size of the main
component N . Because both of these parameters are
used in evaluating the corresponding random clustering
and average path length, changing N or k is likely to
affect these baseline properties. For example, if the aver-
age degree remains constant but network size increases,
then, given their analytic approximations, the random

average path length will increase while random cluster-
ing will decrease. In effect, we are likely to obtain a
disproportionately high ratio of real to random cluster-
ing and a disproportionately low ratio of real to random
average path length. Such an outcome is less of a prob-
lem in cross-sectional analyses where the observed net-
work does not change over time. However, in dynamic
analyses, where the network’s size changes, not account-
ing for these changes can lead to inaccurate estimates of
the small-world property. To fully eliminate the distort-
ing effect of changing network size, we therefore used
size-adjusted ratios of clustering coefficients �4C/CR51
where � = 1/N , and average path lengths �4L/LR51
where � = ln4N 5. Using the adjusted measures, we
subsequently explored the evolutionary pattern of the
small-world structure.7 Figure 2(a) reports the values of
the comparative size-adjusted ratios of clustering and
average path length, which are additionally rescaled
between 0 and 1 (by dividing each value by its maxi-
mum over the entire period). Figure 2(b) reports a com-
bined summary statistic of the small-world quotient Q =

�4C/CR5/�4L/LR5.
8

These trends support our prediction of the inverted
U-shaped evolution of the small-world network, sug-
gesting that although the network shows some features
of a small-world system, it does not remain equally
“small-worldly” all the time. Specifically, Figure 2(a)
demonstrates an initially decreasing trend in average
path length and an increasing trend in clustering. This
pattern is consistent with our prediction of two paral-
lel firm behaviors: the formation of bridging ties, which
reduces the average path length, and local search foster-
ing the formation of local ties, which increases cluster-
ing. The growing clustering and the decreasing average
path length jointly account for the early rise of the small-
world structure, which maps onto 1996–2000. Then,
around 2000, the average path length begins to rise as
the average clustering coefficient starts to decline. Taken
together, these dynamics mark the beginning of the
decline of the small-worldliness of the system, mapped
onto 2000–2005. Our findings on the combined quo-
tient Q in Figure 2(b) provide consistent evidence.9

Robustness Tests. In a series of tests, we verified the
robustness of the results, previously reported in this
paper, using alternative methods of constructing and
tracing the dynamic interorganizational network. First,
we reran the entire analytic procedure on networks with
duration of ties set to three, four, six, and seven years.
Second, rather than tracing the network’s evolution in
half-year increments, we applied three-month and one-
year resolutions, respectively. Both of these analyses
yielded highly consistent results in terms of the produced
evolutionary trend of the small-world system, indicat-
ing a robust curvilinear pattern with the inflection in
2000. Finally, to investigate whether the dynamics of the
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Figure 2(a) Dynamics of Clustering and Average Path
Length Ratios
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Figure 2(b) Dynamics of Small-World Quotient 4Q5
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small world could be sensitive to incomplete partner-
ship data in some periods (Lavie and Rosenkopf 2006,
Schilling 2009), we performed multiple simulation tests
by randomly removing up to 50% of ties from each
network and recalculating the small-world parameters.
Even after such significant data compromises, the overall
U-shaped evolutionary pattern of small worlds remained
unchanged. These results echo the findings of prior stud-
ies, which demonstrated that the global dimensions of
social networks are quite resilient to data incompleteness
(e.g., Kossinets 2006).

In the next series of tests, we extended the analysis
of small worlds beyond the structure of the main com-
ponent to the level of the global network. Because the
traditional metric of average path length is undefined
for disconnected networks, we used average inverted
path length as 2/6N 4N − 157

∑

i<j 1/Di1 j , where 1/Di1 j

is the inverse of the shortest distance between i and j .
It is set to 0 if i and j are entirely disconnected and
1 if i and j have a direct tie, thus conveying the
notion of proximity rather than distance. We obtained
the baseline parameters of the random networks using
Monte Carlo simulations and then estimated the size-
adjusted C/CR and L/LR. Our analysis reproduced a
qualitatively similar inverted U-trend in the global net-
work’s small-worldliness, showing a robust inflection
point around 2000.

Micro-Level Analyses of Actor Behaviors
Although the above analysis highlights the dynamic
nature of this small-world system, it leaves a range of
unanswered questions about the potential micro-level
drivers of these dynamics. Following our theoretical
argument, we therefore decomposed the small-world
system in each observation period into sets of local
ties within cohesive clusters of firms and bridging
ties between clusters. We then explored the relation-
ship between the changing tie configurations at the
firm-level and the macro-level dynamics of the global
small world.10

To distinguish bridging from local ties, we analyzed
the cluster structure of the evolving network in each
period. Detecting clusters has recently been the focus
of research in sociology (Davis 1967, Johnson 1967)
and physics (e.g., Guimerà and Amaral 2005, Newman
2004). The central idea is to partition the network into
cohesive and dense groups of actors in such a way
that the density of ties within groups is higher than
between them. To generate this result, earlier work typ-
ically relied on a standard method known as hierarchi-
cal clustering (Wasserman and Faust 1994). Although
this method is useful for certain types of networks, par-
ticularly those in which the cluster structure can be
inferred from actors’ attributes (such as coaffiliation in
joint social groups), it is less appropriate in our context.
This is because hierarchical clustering requires making
a range of assumptions with respect to the number of
clusters in the network or their sizes. These assumptions
become increasingly tentative for larger networks that
potentially form as a result of complex actor behaviors.

Given that we had no prior knowledge about the seg-
mentation of our network into clusters based on firms’
attributes, we used a clustering technique that takes into
account the betweenness centrality scores of network
ties (Girvan and Newman 2002). This technique is par-
ticularly effective in partitioning a strongly clustered
small-world network, in which ties with higher cen-
trality scores are likely to indicate the natural dividing
lines between clusters. For our network, it thus offers
a more effective approach to identify cohesive clusters
than the standard hierarchical clustering (Girvan and
Newman 2002).
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To determine the optimal division of our network
into clusters in each year, we used the modularity
index. This index offers an effective way to evaluate
the quality of a given division relative to other divi-
sions (Newman 2003). Formally, modularity is defined
as M =

∑

i4li/E5−
∑

i4ei/E5
2, where li is the number

of local ties within the ith cluster, ei is the number of
all ties (local and bridging) connecting to actors in the
ith cluster, and E is the total number of network ties.
Modularity compares the strength of the cluster struc-
ture that was produced by a given division (as indicated
by the summed fraction of local ties) to a cluster struc-
ture in a fully random network of the same size and
degree distribution. The random network is unlikely to
have any community structure, thus constituting a robust
null model. If the division results in a weak cluster struc-
ture, then modularity is close to 0. By contrast, if the
division produces a strong cluster structure, then mod-
ularity is higher and should exceed 0.3 (Newman and
Girvan 2004). Identifying the network’s cluster structure
thus involves maximizing the value of modularity over
all possible divisions and making sure that that maxi-
mum score is greater than 0.3. In partitioning our net-
work, we obtained an average modularity score of 0.72,
which indicated a consistently robust partitioning across
all years. This partitioning produced between 6 clusters
in 1996 and 65 in 2004. The size of a typical cluster in
our network ranged on average from 7 firms in 1996 to
34 firms in 2005.11

Formation of Bridging Ties. Having identified the net-
work’s cluster structure, we designated each network tie
as local (i.e., both partners belong to the same cluster)
or bridging (i.e., the partners belong to different clus-
ters). The respective counts ranged from 124 local ties
and 10 bridging ties in 1996 to 2,429 local ties and
391 bridging ties in 2004. On average, the proportion
of bridges in the main component was 15%. Although
this ratio was not constant, it showed a major transition
in firms’ pattern of forming bridging ties around 2000,
when the pattern of increasing bridging tie formation
shifted to a pattern of decreased bridging (see Figure 3).
To account for the potential impact of changing network
size on the formation of bridging ties, we normalized
their raw count by the size of the main component in
each period. This gave us the average number of new
bridging ties per firm in each period and included both
new bridging ties between firms that were already part
of the small-world network at time t−1 and new bridg-
ing ties between incumbent firms and newcomers who
joined the system at time t.

Relative to network size, there is an increased sup-
ply of new bridging ties during the entire phase of
rising small-worldliness. This observation supports our
prediction of the initial small-world growth as a result
of continued accrual of new network clusters and the

Figure 3 New Bridging Ties per Firm in the Main Component
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decreasing separation of clusters that were already part
of the small-world main component. However, as time
goes by, the continued supply of new bridging ties has
profound implications for the degree of small worlds. As
organizations saturate the empty network space between
clusters and make themselves increasingly more inter-
connected, the social structure begins to act as a key
constraint on the formation of new bridging ties in that
the densely interconnected clusters cease to be pools
of unique knowledge and resources. Instead, they are
likely to offer increasingly homogeneous information,
thus reducing the benefits of new bridging contacts.
Before 2000, dense clusters were interconnected by mul-
tiple bridging ties, effectively yielding a small-world
system that was characterized by a low average path
length. However, as the formation of new bridging ties
declined after 2000 and the existing bridges dissolved,
firms became separated by longer pathways, which in
turn led to the increase in average path length and the
diminishing small-world property.

Our macro-level analysis also suggested a steadily
diminishing clustering coefficient after 2000. This pro-
cess could be related to the concomitant local tie dynam-
ics within clusters and, in our case, to firms’ changing
propensities to form new local linkages. Thus, even
though we did not explicitly focus on this mechanism in
our theoretical discussion, we conducted an additional
exploratory analysis of local tie formation within clus-
ters to understand the possible firm-level determinants
of the declining clustering. Figure 4 traces the counts of
all newly formed local ties within the main component
normalized by its size: we observe high rates of local tie
formations until 2000, followed by a sharp decline. The
initial rise in local ties thus supports our argument of
increasingly dense clusters prior to 2000, and their drop
provides a key micro-level explanation for why, at the
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Figure 4 New Local Ties per Firm in the Main Component
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level of the main component, we see a declining cluster-
ing coefficient over 2000–2005. Altogether, the results
provide a complementary explanation of the declining
small-worldliness past 2000.

Robustness Tests. We conducted additional analyses
to rule out some alternative explanations of the observed
firm-level dynamics of bridging and local tie forma-
tions. A key alternative explanation refers to the chang-
ing opportunity set for the formation of these distinct
types of ties, thus suggesting that the observed dynam-
ics of small worlds could be driven predominantly by
chance. Specifically, one could expect a network consist-
ing of more clusters to promote the formation of bridg-
ing rather than local ties by changing the likelihood of
chance encounters among actors (Blau 1977). By con-
trast, clusters of growing size could facilitate the forma-
tion of cohesive local ties at the expense of nonredundant
bridges. To explore this possibility, we tracked for each
firm the proportion of available contacts in other clusters
to those available in the firm’s own cluster. The aggre-
gated trend showed a consistent increase throughout the
observation period, thus ruling out the possibility that
random perturbations in the network structure could trig-
ger the observed dynamics of the small-world property.

Furthermore, to ensure that the key small-world desta-
bilizing trend of growing average path length could
indeed be attributed to the patterns of bridging tie for-
mations between clusters, rather than within them, we
explored the levels of bridging tie formation inside clus-
ters. To do so, we used firm constraint C = 6pi1 j +
∑

k 4pi1 kpk1 j57
2, where pi1 j is the proportion of firm i’s

time and energy invested in the tie with firm j (Burt
1992), averaged across firms.12 High within-cluster con-
straint captures the lack of structural holes in the firm’s
local network neighborhood, whereas low constraint sig-
nals a position rich in bridging ties. The levels of con-
straint showed a remarkable degree of stability over time

(with a mean C = 0075 and a low standard deviation
around 0.03). This additional analysis confirmed that
both the observed increase in the small-world property
prior to 2000 and its later decline could not be triggered
by bridging tie formation within clusters.

Yet another alternative explanation is that an exoge-
nous shock in the computer industry around 2000 could
trigger a structure-loosening event in the network, which
could explain some of the changes in the observed tie
formation dynamics around that period. A structure-
loosening event is believed to occur when “rich get
poorer” or when highly central actors forgo a central
position while more peripheral actors become more cen-
tral. Replicating the original approach of Madhavan et al.
(1998), who documented such an event in the context
of the global steel industry, we conducted formal tests
for the presence of a structure-loosening event in our
network in 2000 by estimating the correlations of actor-
level degree centrality across the pre- and postevent
windows. Specifically, we chose two nonoverlapping
five-year windows before the event year (1995–1999)
and after (2000–2004), including the event year in
the postevent window to fully account for the conse-
quences of the exogenous shock in 2000 (Madhavan
et al. 1998, pp. 449–450). Our results indicated a high
pre- and postevent degree centrality correlation at the
firm level of 0.8431 (p < 000151 which was signifi-
cantly above the reported correlation of 0.38 in Madha-
van et al. (1998). Using consistent five-year windows,
we also compared this correlation with correlations esti-
mated for three alternative event years, 1998, 1999,
and 2001, respectively. None of these additional analy-
ses produced significantly different correlations between
pre- and postevent windows, thus rejecting the structure-
loosening hypothesis for our network.

Finally, networks could emerge as a result of actors’
preferential attachment in forming network ties rather
than as a result of the formation of local and bridging
ties. Such preferential patterns typically result in highly
skewed distributions of actors’ degrees that are consis-
tent with a power-law distribution (Barabási and Albert
1999). To examine the possibility of preferential attach-
ment in our data, we first analyzed actors’ degrees across
our 20 observation periods. None of the 20 networks
indicated a robust power-law distribution following a
straight line on the log-log chart. Second, using the for-
malized approach, we rejected the power-law hypothe-
sis in 16 of the 20 cases. For the four cases where the
power-law hypothesis could not be rejected, this could
be a result of insufficient data as the network was still
relatively small at that time (Clauset et al. 2009). In
addition to conducting the test for the presence of the
power-law distribution, we also verified the preferential
attachment hypothesis by estimating the correlation of
degrees for pairs of connected actors. A strong and neg-
ative pairwise correlation could be a sign of preferential
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attachment because it would suggest that actors with low
degrees generally tend to pursue ties with more cen-
tral actors (Newman 2002). Our results indicate that the
degree correlation for any two connected actors was only
0.01 inside the main component and 0.19 overall (both
significant at p < 00001), thus providing no support for
preferential attachment. In sum, for the vast majority
of our longitudinal data spanning the formation, inflec-
tion, and decline of the small-world system, these tests
showed that preferential attachment is unlikely to affect
the evolutionary dynamics of the network.

Self-Containment and Fragmentation of Small Worlds.
We hypothesized that the growing homogenization of
the information space in a declining small-world sys-
tem may lead to declining diversity of firms in the
main component. Lower diversity, in turn, may lead to
self-containment, whereby the deteriorating small world
becomes impenetrable for firms from outside the main
component and fragmentation where the small world
loses some of its clusters altogether. We examined the
degree of diversity of firms in the small-world system
using Shannon’s (1948) measure of information entropy.
We calculated this index individually over two distinct
sets of firm attributes: (i) the first two digits of the
SIC codes from Compustat, which correspond to broader
industry areas in which firms operate; and (ii) the two-
digit technological subcategories of firms’ patent appli-
cations, extracted from the NBER patent database (Hall
et al. 2001).13 The resulting diversity trends—computed
for the entire population of firms in the small-world net-
work and plotted in Figures 5(a) and 5(b)—support our
prediction of the increasing homogenization of the sys-
tem after 2000.14

These trends reaffirm our prediction that the homoge-
nization of the information space gradually reduces the
diversity of firms that populate the small-world network.

Figure 5(a) Industrial (SIC) Diversity of Firms in the
Small World
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Figure 5(b) Technological (Patent) Diversity of Firms in the
Small World
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Progressive homogenization of the main component and
decreasing diversity of the information flows within it
may contribute to the diminished appeal of the core sys-
tem to newcomers. This, in turn, is likely to diminish
the incentives for newcomers to join the small world,
and the increasingly homogeneous population of firms
within it may also make entry more challenging for firms
seeking greater diversity. By contrast, companies that
stay in the rapidly enclosing network are more likely to
be driven by inertia and homophilous attachment, fur-
ther driving down the network’s innovation potential.
Taken together, these processes are likely to lead to the
increased self-containment of the small world and its
growing isolation from the broader network. Our results
confirm this dynamic. The newly formed bridging ties
by actors within the small world to clusters outside of
the small world declined after 2000, indicating the net-
work’s growing self-containment.

The decreased attractiveness of a small-world sys-
tem can also make it more difficult for organizations to
develop and sustain current bridging ties. This can result
in the fragmentation of the system, wherein entire clus-
ters of firms begin to leave the core small world and
become stand-alone entities outside of it. The height-
ened formation of new interorganizational partnerships
predominantly outside the small-world system reinforces
this process. These new partnerships are driven by both
newcomers to the network and organizations leaving the
small world. As a result, the center of gravity in network
formation shifts away from the small-world component
to the disconnected network peripheries. Based on our
data, Figures 6(a) and 6(b) support these trends. In con-
trast to the preceding period, declining small-worldliness
of the core main component is accompanied both a sharp
increase in the total number of components in the sys-
tem and an increased formation of new ties outside the
main component.
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Figure 6(a) Relative Number of Network Components
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Figure 6(b) Location of Newly Formed Ties
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Statistical Modeling of Attachment
We also statistically modeled the dynamics of attach-
ment. Our goal was to validate the previous descriptive
analyses on role of the formation of local and bridging
ties in determining the rise and decline of the small-
worldliness of the system. We used counts of newly
formed ties for each organization in each time period as
our dependent variables, differentiating between bridg-
ing and local ties in the main component. Using a binary
variable, postinflection, we distinguished the pre- and
postinflection period in small-world evolution (0 before
2000; 1 after 2000). Because we predict the formation of
bridging ties to decline after 2000, we expect the postin-
flection binary to have a negative effect on the formation
of bridging ties.

Because our tests established overdispersion in the
count-dependent variables (annual counts of bridging

and local ties)—a common feature of many count vari-
ables (Hilbe 2007)—we used a set of negative bino-
mial regression models. Negative binomial regression
may be considered a generalization of the standard Pois-
son model particularly suited to dealing with overdis-
persion because it incorporates an additional parameter,
which introduces an unobserved heterogeneity effect into
the conditional mean. The negative binomial specifica-
tion is estimated using the maximum likelihood method
and allows for greater variance than the Poisson model,
thereby avoiding Poisson’s downward bias in estimation
of standard errors in situations of overdispersion.15

In the second set of models, we aimed to verify
whether micro-level actions indeed translate into macro-
level outcomes according to the predicted patterns.
Specifically, we sought to understand whether bridg-
ing and local ties significantly influence the average
path length and clustering of the system, respectively.
Because system-level path length and clustering are sim-
ple averages of firm-level values, we used ordinary least
squares (OLS) regressions to model the firm-level aver-
age path length and clustering as a function of a firm’s
bridging and local ties. Our goal here was to ensure that
the relationships between bridging ties and path length
and local ties and clustering are statistically meaningful
and that these relationships hold throughout the evolu-
tionary trajectory of the small-world system.16

To ensure the robustness of our results, we controlled
for each firm’s profit margin, debt ratio, logged head-
count (all lagged by one year), and degree centrality,
measured as the logged number of partnership ties that
the firm had formed in periods t−1 to t−5. To account
for any unobserved heterogeneity in alliance formation
among organizations, we also tracked the firm’s prior
partnership frequency using the logged number of all
past ties created by the firm between 1991 and t−5. We
furthermore used dummy variables to control for the pri-
mary business group affiliations (captured by two-digit
SIC codes) and to denote whether the firm was located
inside the main component at t−1. Finally, to control for
network dynamics at the level of the entire system and
their possible impact on firms’ predicted average path
length and clustering, we used the aggregate count of all
new ties formed at t−1 outside of the main component.

We estimated robust standard errors adjusted for het-
eroskedastic variance of the error term (White 1980).
To adjust for nonindependence of observations, which
is a common problem in network data, we used a two-
pronged approach. First, we adjusted for nonindepen-
dence of observations by clustering standard errors at the
firm level, which minimizes the risk of downward esti-
mation of standard errors. Second, consistent with prior
research (e.g., Baum et al. 2005, Marsden and Friedkin
1993), we modeled network autocorrelation as a form of
influence process: yt+1 = �Wij1 tyj1 t +x�+�, where Wij1 t

is the industrial similarity between the focal actor and
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all other actors j in the network at time t, and yj1 t is the
corresponding lagged dependent action of j (e.g., total
count of new bridging ties created by j at t). We have
specified Wij = 1 if i and j belonged to the same busi-
ness group according to the first two SIC digits and 0 if
otherwise. Based on our analysis of the empirical con-
text of computer industry, the two-digit SIC groupings
are a salient differentiator in the industry and are there-
fore an appropriate similarity metric to capture network
influence processes.17

Table 1 presents correlations among our variables.
Throughout the estimation process, we exercised extreme
care in dealing with possible concerns of multicollinear-
ity. Condition indices were sufficiently low to ensure
both the power of the analyses and the stability of the
estimates were adequate in all our models (Belsey et al.
1980). It is important to note that network autocorrela-
tion effects in all models (Table 2, Models 1–8) were

Table 1 Descriptive Statistics and Correlation Matrix

Variable Mean SD Min Max 1 2 3 4 5 6 7

DV1 Bridging ties 00036 00368 0 15
DV2 Local ties 00164 00836 0 21
DV3 Avg. path length 20796 20163 10000 120619
DV4 Clustering coefficient 00718 00431 00000 10000
1 Profit margin −00918 100842 −3600833 80434 —
2 Debt ratio 00890 10166 00000 570231 −00049 —
3 Headcount 20027 20341 00010 130465 00060 00018 —
4 SIC dummy 1 (group 35) 00096 00295 0 1 00001 00021 00039 —
5 SIC dummy 2 (group 36) 00113 00316 0 1 00010 −00035 00086 −00116 —
6 SIC dummy 3 (group 48) 00082 00275 0 1 −00035 00024 00137 −00098 −00107 —
7 SIC dummy 4 (group 73) 00415 00493 0 1 −00018 −00027 −00316 −00275 −00300 −00252 —
8 SIC dummy 5 (other) 00294 00455 0 1 00033 00025 00174 −00210 −00230 −00193 −00543
9 Industrial similarity (DV1) 00015 00034 00000 10000 −00012 −00013 00047 00145 00068 00025 −00100

10 Industrial similarity (DV2) 00091 00146 00000 40714 −00008 −00016 00045 00253 00215 −00036 −00148
11 Industrial similarity (DV3) 20088 00703 00000 40988 00000 00003 00024 00059 −00011 00119 −00088
12 Industrial similarity (DV4) 00808 00222 00000 10000 00004 −00009 00052 −00044 00002 −00026 −00076
13 Degree centrality 10073 00597 00693 40443 00038 −00002 00216 00078 00056 00018 −00023
14 Past partnership 10114 00648 0 40868 00022 00005 00184 00110 00074 −00022

frequency
15 Firm inside MC 00363 00481 0 1 −00017 −00042 00033 −00022 −00007 −00007 00010
16 Ties outside MC 1120196 620493 13 284 00023 −00024 00110 00038 00032 00047 −00014
17 Postinflection 00802 00399 0 1 00003 00000 −00094 −00094 −00062 −00009 00044
18 Local ties 00165 00841 0 21 00013 −00005 00089 00052 00029 −00011 −00007
19 Bridging ties 00036 00368 0 15 00008 00001 00079 00058 00045 −00017 −00019

8 9 10 11 12 13 14 15 16 17 18 19

8 SIC dummy 5 (other) —
9 Industrial similarity (DV1) −00047 —

10 Industrial similarity (DV2) −00131 00359 —
11 Industrial similarity (DV3) −00008 00152 00069 —
12 Industrial similarity (DV4) 00125 00164 00080 00716 —
13 Degree centrality −00076 00026 00026 00054 −00011 —
14 Past partnership −00065 00015 00033 00018 −00034 00749 —

frequency
15 Firm inside MC 00012 00362 00369 00176 00308 −00016 −00019 —
16 Ties outside MC −00060 −00019 −00001 00088 −00062 00448 00290 −00058 —
17 Postinflection 00061 −00119 −00125 00288 −00164 00041 00037 00077 00165 —
18 Local ties −00039 00170 00090 00027 00030 00395 00411 00083 00260 −00012 —
19 Bridging ties −00037 00062 00153 00016 00015 00331 00465 00076 00131 −00012 00413 —

Note. DV, dependent variable; MC, main component; SIC, Standard Industrial Classification.

positive and statistically significant. This suggests the
possible presence of network influence processes, which
were purged out of the estimated predictors. Consis-
tent with our exploratory actor-level analysis of network
data, the negative effect of the postinflection binary vari-
able in Model 1 suggests that the formation of bridging
ties declines significantly following the first half of 2000,
where we observe the inflection point in the adjusted
small-world quotient. These results are consistent with
our descriptive finding of the initially rising and then
declining trend in the formation of bridging ties. We
also see a similar trend in the formation of local ties
(Model 2), although the drop-off in this trend after the
inflection point is less severe than the drop-off in bridg-
ing ties. In additional tests, we have confirmed these
trends by using half-year time fixed effects.18

Models 3 and 4 confirm our previously descrip-
tive result that average path length increases after the
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Table 2 Statistical Modeling of Attachment (Models 1 and 2: Negative Binomial Regression; Models 3 to 8: OLS Regression)

Model 1: Model 2: Model 3: Model 4: Model 5: Model 6: Model 7: Model 8:
Bridging Local Avg. path Clustering Avg. path Clustering Avg. path Clustering

DV ties ties length coefficient length coefficient length coefficient

Constant −801252 −407761 104017 103512 103761 103554 103802 103548
40032725∗∗∗ 40014035∗∗∗ 40006815∗∗∗ 40002475∗∗∗ 40006795∗∗∗ 40002475∗∗∗ 40006805∗∗∗ 40002475∗∗∗

Profit margin 000108 000208 000002 −000003 000002 −000003 000002 −000003
40002315 40001515 40000145 40000025 40000145 40000025 40000145 40000025

Debt ratio 000786 −000040 −000061 000098 −000059 000097 −000061 000098
40001595∗∗∗ 40004875 40001205 40000485∗∗ 40001205 40000485∗∗ 40001205 40000485∗∗

Headcount −000019 000126 000034 000060 000028 000061 000028 000061
40003335 40001705 40000735 40000315∗ 40000735 40000315∗ 40000735 40000315∗

SIC group dummies Yes Yes Yes Yes Yes Yes Yes Yes
Network 608897 103432 000376 000365 000381 000359 000384 000360

autocorrelation 41062765∗∗∗ 40033105∗∗∗ 40001825∗∗ 40001305∗∗∗ 40001825∗∗ 40001305∗∗∗ 40001825∗∗ 40001305∗∗∗

Degree centrality 208586 202787 −000914 −005346 −000817 −005379 −000773 −005385
40015595∗∗∗ 40007305∗∗∗ 40005715 40002785∗∗∗ 40005615 40002785∗∗∗ 40005585 40002785∗∗∗

Past partnership −000312 −000344 −000216 000142 −000165 000141 −000170 000141
frequency 40000405∗∗∗ 40000315∗∗∗ 40000345∗∗∗ 40000195∗∗∗ 40000315∗∗∗ 40000195∗∗∗ 40000315∗∗∗ 40000195∗∗∗

Firm inside MC −003413 −007526 307323 −000383 307516 −000420 307520 −000420
40024285 40009925∗∗∗ 40004435∗∗∗ 40001615∗∗ 40004485∗∗∗ 40001615∗∗∗ 40004485∗∗∗ 40001615∗∗∗

Ties outside MC — — 000003 000001 000005 000001 000005 000001
40000025 40000015 40000025∗∗ 40000015 40000025∗∗ 40000015

Postinflection −008269 −006104 001770 −000641 001630 −000626 001543 −000615
40017325∗∗∗ 40007865∗∗∗ 40003645∗∗∗ 40001395∗∗∗ 40003665∗∗∗ 40001415∗∗∗ 40003665∗∗∗ 40001415∗∗∗

Local ties −000728 000162 −000694 000157
40001075∗∗∗ 40000365∗∗∗ 40001035∗∗∗ 40000365∗∗∗

Bridging ties −001230 −000129 −002915 000073
40003375∗∗∗ 40000865 40004935∗∗∗ 40001585

Bridging ties 002101 −000252
× Postinflection 40005235∗∗∗ 40001495

Log-likelihood −1,168.0∗∗∗ −4,720.4∗∗∗ — — — — — —
R-squared — — 0065 0040 0066 0040 0066 0040
Obs. 14,550 14,550 14,550 14,550 14,550 14,550 14,550 14,550

Notes. Standard errors are in parentheses. DV, dependent variable; MC, main component; SIC, Standard Industrial Code.
∗∗∗p < 0001; ∗∗p < 0005; ∗p < 0010.

inflection point as clustering goes down. These results
suggest that the observed inversion in the small-word
property is statistically meaningful. Models 5–8, in
turn, render support for the theoretical link between the
micro-level mechanisms of the formation of bridging
and local ties and the macro-level parameters of path
length and clustering, respectively. Specifically, newly
formed bridging ties—by virtue of introducing critical
shortcuts in the system—have a strong negative impact
on the average path length (Model 5).19 Local ties also
register a negative effect on path length (Model 5): an
addition of any tie can potentially add to the connectivity
of the system, although the effect of local ties is notice-
ably weaker than that of bridging ties. Consistent with
our prediction, local ties provide a significant positive
contribution to clustering (Model 6). Results in Model 7
further suggest that in the postinflection phase, the neg-
ative impact of new bridging ties on path length is atten-
uated. This is aligned with our observations that as the
system gets more globally interconnected and the space

between clusters is saturated, the marginal contribution
of each new bridging tie to path length is diminished.20

Discussion
In this study, we have explored the evolutionary dynam-
ics of one small-world network. Our central contribu-
tion has been to highlight that at least some small
worlds can be seen as highly dynamic systems that fol-
low an inverted U-shaped evolutionary pattern, wherein
the increase in the small-worldliness of the system is
followed by its decline. We have decomposed small
worlds to the actor level of analysis, explaining the dif-
ference between local ties that agglomerate into tightly
linked clusters and bridging ties that connect those clus-
ters. Early in the formation phase of small worlds, the
social structure offers numerous entrepreneurial oppor-
tunities for the recombination of diverse knowledge
and resources across different and sparsely linked clus-
ters, thereby stimulating the formation of bridging ties.
Increased formation of bridging ties, in turn—by making
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clusters more interconnected and as a result more homo-
geneous in the information, knowledge, and resources
they offer—eliminates the key driver behind it: the diver-
sity of the resource pool. Thus, the evolving social struc-
ture turns from enabling the formation of bridging ties
to becoming a source of constraint with respect to it. As
fewer and fewer firms pursue the diminishing benefits
of bridging ties, the small world loses its unique feature
of low global separation, reflecting a decline in the sys-
tem’s small-worldliness. In this way, the very process of
social actors’ entering into bridging ties—the dynamic
that is key to the formation of a small-world structure—
works in recursion with the evolving social structure to
catalyze the subsequent decline in small-worldliness of
the system. This trend is coupled with (1) increasing
homogenization of the system and its self-containment,
wherein fewer actors are able to enter the decreasingly
diverse system from the outside; and (2) fragmentation,
which manifests in the separation of some clusters from
the system as the declining small world loses its appeal.
Taken together, these trends account for the inverted
U-shaped evolutionary path of the small-world system.

Our central finding requires one important caveat.
We relied on a single network in this analysis, so the
study’s generalizability is certainly a question for future
research. It is possible that our findings are peculiar
to the computer industry alone. It is also possible that
the theoretical mechanisms explicated here could apply
to a range of other interorganizational or interpersonal
settings where individual action is closely intertwined
with the set of opportunities and constraints produced by
the evolving macro-social structure. Other similar con-
texts worthy of scrutiny could thus include networks of
interlocking directorates (Davis and Greve 1997), ven-
ture capital (e.g., Sorenson and Stuart 2001), and invest-
ment syndicate (e.g., Shipilov and Li 2008) ties among
organizations, as well as networks of communication
among individuals (e.g., Brass 1984, Burt 2004). We
would also expect less knowledge-intensive settings, in
which actors’ survival depends less on gaining access
to cutting-edge skill sets and knowledge through net-
work ties, to display less dynamic network structures
(see Lin 2001).

One could also consider two alternative explanations
of the observed dynamics of the small-world system.
One possibility is that the increasing pursuit of bridg-
ing ties would saturate the network space to the extent
of ultimately producing a single cohesive cluster. As
a possible consequence of this process, network mem-
bers would then start seeking connections to clusters
located outside of what once used to be the core small
world. This alternative explanation, however, has sev-
eral shortcomings on conceptual grounds. First, this
argument rests on the assumption that actors within
a small-world system continue to form bridges at an
increasing rate even though the actual advantages of

bridging at some point diminish as a result of the grow-
ing interconnectivity of clusters. Second, actors located
outside of the small-world network would have to show
an undaunted interest in joining the small world despite
the eroding value of informational space. Finally, for this
argument to hold, actors would have to withstand the
strong lock-in pressures that characterize an increasingly
homogeneous small world and continue nevertheless to
actively seek bridging opportunities outside of it.

These concerns make it a rather unlikely scenario,
and not surprisingly, our empirical results invalidate this
alternative explanation. First, the formation of bridg-
ing ties in the network follows a clear curvilinear pat-
tern. This confirms that firms indeed display a lower
propensity to form new bridging relationships once the
small world has become more interconnected. Second,
in the postinflection period, the small world suffers from
increasing self-containment, so that new clusters become
less likely to join the system from the outer network.
Finally, because the postinflection small-world system
also appears to be increasingly more homogeneous, it
contributes even more to growing self-containment by
(i) limiting the acceptance of outsiders by actors inside
the small world and (ii) discouraging actors inside the
small worlds from pursuing external partnerships.

Another possibility would be to attribute the declining
formation of bridging ties to the shifts in the opportunity
space within the social structure. Specifically, one might
argue that as the formation of bridging ties escalates and
the space between clusters becomes more saturated, the
available structural opportunities for forming new bridg-
ing ties disappear. By this logic, even though many firms
would still remain keen on entering into new bridging
ties, the global system would make it increasingly diffi-
cult for them to become brokers because of its changing
inner topology. Although this argument is simple and
intuitively appealing, for it to hold the network would
have to reach extreme levels of saturation between clus-
ters. Indeed, most—if not all—of the available bridging
opportunities would have to be captured early on by the
incumbent brokers. Empirically, however, this possibility
is hardly supported in a large and sparse network such
as ours, where only a fraction of potential ties is ever
formed. Throughout the evolution of our partnership net-
work, we found its global density to be consistently low
and never higher than 5% of all possible ties. Likewise,
the density of bridging ties within the main component
(i.e., the count of actually formed bridging ties divided
by all possible ties between clusters) never exceeded 1%.
It is therefore hard to argue for a strong saturation effect
emanating from the changing network architecture.

Our results also indicate that, in addition to the
declining formation of bridging ties and the growing
global separation that powerfully drives that decline,
small worlds show a decline in local clustering. As
our exploratory analyses indicate, this trend—which
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further reinforces the decline of the system’s small-
worldliness—is most likely driven by firms’ decreasing
propensity to form new local ties. Although the decline
in the formation of local ties was not as sharp as that
in the formation of bridging ties, it is likely to have
fostered sparse local neighborhoods, effectively creating
a structure with low local interconnectivity. One possi-
ble explanation for this trend could be that as a social
structure limits the flow of nonredundant knowledge,
there is less and less need to create cohesive structural
groups around transforming new knowledge into com-
mercial applications. Not seeing any innovation bene-
fits in external collaborations, organizations may become
increasingly focused on internal innovation, forgoing the
formation of both bridging and local ties altogether.

Our study makes several contributions to organiza-
tional theory. First, it adds to the broad literature on the
social embeddedness of economic action (Granovetter
1985, Haunschild and Beckman 1998, Mizruchi 1992,
Phillips and Zuckerman 2001). We show that underly-
ing the market for interorganizational partnerships is a
social structure that shapes organizational behavior. The
social structure we identify in this study has the topol-
ogy of a small-world system, thereby reinforcing it as
one of the most ubiquitous structural skeletons of social
action. Acts of tie formation among organizations thus
emerge not as atomistic market exchanges, but rather as
interdependent and socially embedded actions, the full
implications of which can be understood only via careful
consideration of the surrounding social context.

Second, we contribute to the growing body of research
on the dynamics of social structure (e.g., Gulati 1995,
Gulati and Gargiulo 1999, Powell et al. 2005) by explor-
ing the micro-level dynamics associated with the emer-
gence of social structure. We show that social structure
should not be viewed as a static determinant of individ-
ual action, but rather as a vibrant and constantly evolving
set of opportunities and constraints. Our findings suggest
that at least in some systems, the recursive evolutionary
cycle between the macro-level social structure and the
formation of bridging ties at the micro level may take a
social system through a set of dynamic equilibria that are
jointly determined by collective benefits accruing to the
system and by the distribution of individual rewards. In
addition, this study takes a further step toward defining
systematic phasal and temporal patterns in the evolu-
tion of social systems. Because our findings suggest that
the complex evolutionary dynamics of social structures
could drive substantial variation in actors’ outcomes and
behaviors over time, this research thus offers an impe-
tus for future work on the temporally bounded effects of
social structures (e.g., Mizruchi et al. 2006).

Third, our discussion shows that it is imperative to
view complex social structures as multilevel systems in
which evolutionary dynamics may be deeply intertwined
over various levels of analysis and thus act in a tightly

interdependent fashion. In doing so, we demonstrate the
robustness of Coleman’s (1990) view of the link between
macro-social and micro-social levels of analysis, as well
as Giddens’ (1984) ideas on the duality of structure
and action. We also fill an important lacuna in exist-
ing empirical studies by highlighting one set of recur-
sive mechanisms through which a macro-level social
structure elicits certain patterns of micro-level behav-
ior, which in turn shape the very same macro structure.
Finally, we contribute to studies of complex systems
(e.g., Gell-Mann 1994, Waldrop 1992) by showing that
the genesis and evolution of small worlds can be better
understood by using an interdisciplinary approach that
draws on the theories and methods of complex systems
research. We show that small worlds are multilevel, open
systems that can be characterized by nonlinear patterns
of change and by not settling at an equilibrium. Instead,
they constantly shift from one equilibrium to another,
and each such dynamic equilibrium can be an entirely
new small world that occurs in a vastly different region
of the social network space and at a different time.

The complex nature of the evolution of small worlds,
whose basic components we explore in this study, opens
a broad array of opportunities for future research. First,
we expect the dynamics highlighted in this study to
progress into an even more complex pattern that subse-
quent studies can explore. These dynamics could be fol-
lowed by a phase characterized by the continued decline
of the system’s small-worldliness and a shrinking main
component. Such a trend, however, would be accompa-
nied by the development of an increasingly vibrant struc-
ture outside the main component of an existing small
world. Not only is it conceivable that clusters located
outside the main component would continue to grow,
with one of them eventually overtaking the old core sys-
tem and becoming the new main component, but it is
also quite likely that this new main component would
become more intricately connected internally and thus
include both local and bridging ties. This condition of
intricate connection might then lead to the emergence of
a new small-world structure, making small worlds a tran-
sient but temporally recurrent feature of large social net-
works. At a higher level of analysis, this process could
be described as a pulsating small-world network. Hints
of this trend can be found in some of our results con-
cerning the formation stage of small worlds, where we
see the main component not only acquire the properties
of a small-world system but also rapidly grow in size
by attracting multiple outside components that eventu-
ally become part of the complex internal structure of
the growing small worlds. If our predictions about the
pulsation of social networks are confirmed, then future
research could explore the factors that explain why cer-
tain clusters lead the formation of a main component and
hence the emergence of a small-world system. Examin-
ing these dynamics could offer interesting insights into
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possible coalitionary trends unfolding in networks as
well as into global patterns of interdependence among
organizations (Bae and Gargiulo 2004, Gulati and Sytch
2007). We see even further research potential in delv-
ing deeper into the actor-level dynamics underlying the
evolution of small worlds (see Baum et al. 2003). Ques-
tions around which organizations enter into bridging ties,
which organizations are among the first to leave a small
world’s deteriorating main component, and which orga-
nizations are among the first to enter into bridging ties in
new small worlds hold great theoretical value and great
promise for future research.
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Endnotes
1A regular network represents a stylized structure where actors
are ordered along a circle and each actor has k neighbors. Set-
ting k to be an even number helps visualize the ring lattice
as a network in which exactly k/2 neighbors are located on
the left and k/2 neighbors on the right of the actor. In such
a structure, each actor is thus connected to k-most proximate
alters, resulting in a system with relatively high local cluster-
ing and a complete absence of shortcuts. Therefore, if an actor
needs to cross to the “opposite side” of the circle to reach a
more distant contact, it must go along the entire circle.
2It is important to note that understanding the micro-level
actions of purposive social agents has a rich tradition in both
sociology (e.g., Coleman 1990) and economics (e.g., Cowan
et al. 2007, Jackson and Rogers 2007). This line of inquiry has
also been extended to studies of interorganizational relation-
ships (Baum et al. 2010, Ozcan and Eisenhardt 2009, Powell
et al. 2005, Stuart 1998). Particularly as applied to social net-
works, exactly how much agency one can attribute to actors’
independent volition versus the actors’ response to the pull
from their surrounding social structure has been the subject
of a considerable theoretical debate (e.g., Emirbyaer and Mis-
che 1998, Sewell 1992). Although resolving this debate is
beyond the scope of this paper, our theoretical focus lies in
emphasizing the role of the macro-level social structure as a
key enabler or constraint of individual action (e.g., Giddens
1984, Zaheer and Soda 2009).
3Prior research has indicated the importance of social consid-
erations in choosing and retaining partners (e.g., Gulati 1995,
Larson 1992), which in turn suggests that the cluster struc-
ture of the computer industry is unlikely to have a one-to-one
correspondence with the technological classification of firms.
Instead, the structural boundaries of different communities—
which ultimately shape the development, accumulation, and
sharing of knowledge in the industry—are best viewed as a
complex product of the interaction of social and technological
forces. Thus, analyzing the dynamics of specific patterns of
interorganizational relationships can offer a particularly effec-
tive approach to tracing the evolution of the computer industry
as a socioeconomic system.
4For robustness, we also verified this condition empirically by
collecting additional data on computer alliances between 1986

and 1990. We used SDC as a primary source for this infor-
mation but cross-validated the data with another widely used
repository of strategic alliances, the MERIT-CATI database.
Our analysis indicates that in comparison to our focal period
the average annual count of newly formed partnerships over
1986–1990 was 15 times lower. The corresponding networks
mapped for 1986–1990 were thus, on average, 14 times
smaller than the systems over 1996–2005. Using this infor-
mation, we then computed the percolation threshold of each
network, or the probability of finding a large main compo-
nent within it, defined as 1 −N−1/k. For the networks used in
the study, our results showed an average percolation threshold
of 0.92, suggesting that a dominant main component in those
systems was very likely. By contrast, the networks over 1986–
1990 yielded a percolation threshold of 0.38 and were thus two
and a half times less likely to be globally connected. We veri-
fied empirically whether this was the case in our data by com-
puting the variation of component sizes as

∑

i4ni/N52, where
i indicates the ith component and ni is the size of the ith com-
ponent. Rather than capturing the total fraction of actors in the
main component, this method allowed us to account for both
the components’ count and their size distribution. Results indi-
cate that the study’s networks over 1991–2005 were, on aver-
age, seven times more connected than those over 1986–1990.
Tracking MERIT-CATI partnership data all the way back to
1966, we also found that it was only in 1986 when the network
acquired a main component greater than a single dyad, and the
system did not develop discernable global topology until the
1990s. Taken together, these results indicate that the network’s
global architecture began to take shape only in the 1990s, and
thus our study’s observation time frame effectively captures
the evolution of the social system since its early inception.
5For the 65 partnerships with precise termination dates in SDC
reports, their average duration was also close to five years,
which further supported our choice of the five-year moving
window.
6The random network, which has found frequent use in prior
analyses of small worlds (e.g., Baum et al. 2003, Davis et al.
2003, Kogut and Walker 2001), offers a particularly effective
baseline model for two reasons. First, for any size and connec-
tivity, it yields a low average path length LR, thus coming very
close to a prototypical small world in terms of actor separation.
Second, it shows a weak clustering CR, which makes it quite
different from a small-world system in terms of cohesion.
7To analytically bolster our reasoning, we conducted a series
of computational experiments using first standard and then
adjusted small-world metrics. Our simulations indicate that
although the unadjusted measures indeed introduced a sub-
stantial scaling error into the small-world parameters, perform-
ing the suggested corrections was very effective in eliminating
these undesired effects and helping obtain more robust mea-
surements. These results are unreported but are available from
the authors upon request.
8Note that we also rescaled the quotient by �/� to control for
the periodic effects of network size. It is important to note that
this change echoes earlier research that noted that Q varies
strongly with network size (Baum et al. 2003). For example,
in our review of the recent organizational literature, we found
that the value of Q associated with small worlds varies rather
strongly, from as low as Q = 2 in smaller networks (e.g., Uzzi
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and Spiro 2005) to as high as Q = 60 in larger networks (e.g.,
Davis et al. 2003).
9The trends revealed past the inflection point in the small
world are partly consistent with our theoretic predictions.
Although we expected the average path length to increase as a
consequence of the predicted decline in bridging tie formation,
we also predicted that the clustering coefficient would remain
constant. However, in addition to rapidly growing actor sepa-
ration, we also witness a decreasing trend in clustering. There-
fore, as we analyze the micro trends underlying the growing
average path length in the next section, we also complement
these analyses by investigating the possible drivers of the
decreasing degree of clustering.
10Our focus on cross-cluster bridging captures a stronger form
of bridging than the more encompassing concept of broker-
age, defined as spanning any two otherwise unconnected con-
tacts (Burt 1992). In the latter form, the contacts may belong
to the same cluster and thus offer each other little informa-
tional value. Put differently, they offer a lower incentive for
establishing a bridging connection than firms that come from
a different cluster, linking to which provides an entrée into
an entirely new community of firms with potentially rich and
novel knowledge and resource pools. We therefore expected
between-cluster bridging ties, rather than simply ties to dis-
connected contacts, to play a very significant role in access-
ing diverse knowledge and resources. To ensure that we are
not sidestepping an important empirical factor in small-world
dynamics, throughout this paper we also discuss results based
on a within-cluster metric of brokerage, such as network con-
straint (Burt 1992).
11Because these results rely to some degree on the chosen par-
titioning procedure, we verified them against alternative meth-
ods. In particular, we used the method proposed by Guimerà
et al. (2004), which is based on an optimization technique
called “simulated annealing.” The obtained divisions corre-
sponded closely to the ones identified using the betweenness
centrality approach.
12For an undirected and unweighted network such as ours, pi1 j

simplifies to di1 j/di, where di is i’s degree and di1 j is i’s
degree with j .
13To calculate the degree of firms’ technological diversity, we
examined the different knowledge areas in which firms apply
for patents in a given year. We extracted the yearly counts of
patent applications received by the U.S. Patent and Trademark
Office from the NBER database (see Hall et al. 2001). Given
that systematic patent data are available until 2002, we focused
on the period 1996–2002 and differentiated between the tech-
nological areas of patents using the 36 patent subcategories
identified by Jaffe and Trajtenberg (2002).
14We also replicated these results using Blau’s (1964) index of
diversity. Furthermore, we established that not only does the
aggregate system become more homogeneous in the decline
phase of small world, but the individual clusters within the
system follow the same pattern of growing homogenization.
To capture this trend, we calculated within-cluster diversity
indices of firms using both Shannon’s (1948) and Blau’s
(1964) approaches and subsequently averaged the results
obtained for clusters over the entire small-world network.
15Following the Hausman test, which indicated that conditional
fixed-effects and random-effects models were comparable, we
also estimated all our models using the random-effects variants

of the negative binomial regression. Results were consistent
with those we estimated using negative binomial with robust
standard errors.
16Since values of actor-level clustering are bounded between 0
and 1, we reran Models 4, 6, and 8 using Tobit estimation.
The results remained unchanged.
17In a set of robustness tests, we additionally modeled network
influence based on three alternative measures of similarity:
(1) size similarity, based on headcount; (2) financial perfor-
mance similarity, based on return on assets; and (3) technolog-
ical similarity, based on the distribution of firms’ alters across
the two-digit SIC industrial space. In all these instances, the
effect of the similarity measure on the dependent variable was
weaker compared with the one based on industrial similarity
and reported here; all other effects remain similar.
18The time binary variables used in our models may capture
the impact of some market shock on the evolution of small
worlds rather than the role of structural dynamics. To inves-
tigate this possibility, we created an additional measure that
reflected the aggregate sales of all firms in our sample for the
given year. When used instead of the time effects models (we
could not use sales and year effects jointly as they represent
comparable year-level fixed effects), the aggregate sales mod-
els produced a significantly worse fit to the data while leaving
all other established effects intact. Coupled with our controls
for firms’ financial and resource endowments, this result sug-
gested that exogenous market or competitive dynamics could
not be held solely accountable for the observed changes in the
social structure.
19Baron and Kenny’s (1986) more stringent test for the signif-
icance of mediation indicated that the partial mediating effect
of bridging ties is statistically significant at p < 00001. This
result supports the prediction that the dynamic of bridging
tie formation represents a statistically significant explanatory
trend behind the observed temporal variation in the average
path length of the system.
20In a set of additional analyses, we used the constraint mea-
sure (Burt 1992) to model within-cluster bridging tie forma-
tion. We did so to ensure statistical concordance with our
prior visual analyses and the accuracy of our inferences with
respect to the insignificant role of within-cluster bridging in
the dynamics of small worlds. Results show random variation
of constraint over time that was indistinguishable from zero.
This result confirms that within-cluster bridging plays no dis-
cernable role in the dynamics of small worlds.
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