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Departing from prior research analyzing the implications of social structure for actors’
outcomes by applying either an ego network or a global network perspective, this study
examines the implications of network communities for the invention productivity of
firms. Network communities represent dense and nonoverlapping structural groups of
actors in a social system. A network community lens helps identify new ways to study
firms’ access to diverse knowledge inputs in a dynamic system of interorganizational
relationships. Specifically, we examine how the membership dynamics of a network
community affect the invention productivity of member firms by either enabling or
constraining access to broad, diverse knowledge inputs. Our findings suggest, first, that
a firm reaps the greatest invention benefits in a network community with moderate
levels of membership turnover. Second, a firm attains the greatest invention produc-
tivity when its own rate of movement across different network communities is mod-
erate. Third, we find that community members located in the core of their network
community can benefit more from membership dynamics and prior community affil-
iations than those on its periphery. In empirical analyses, we use the evolving com-
munity structure of the network of interorganizational partnerships in the global

computer industry over 1981-2001 to predict firms’ patenting rates.

In recent years, scholars have made significant
advances in understanding how the social structure
of markets impacts companies’ learning and inven-
tion productivity by shaping the flows of resources
and information among them (Beckman & Hauns-
child, 2002; Greve, 2009; Lavie & Drori, 2012).
Since the critical knowledge required for develop-
ing new inventions is often complex and noncodi-
fiable, interorganizational relationships can be
particularly instrumental in facilitating the ex-
change and transmission of tacit knowledge
through joint action, collaborative learning, and
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direct observation (Mowery, Oxley, & Silverman,
1996). As a result, research suggests that the lo-
cus of invention activities is often situated in
networks of interorganizational ties, because novel
ideas are frequently born at the intersection of differ-
ent organizations’ knowledge flows (Powell, Koput, &
Smith-Doerr, 1996).

Prior research has generally applied two comple-
mentary perspectives to explore the effects ofinteror-
ganizational networks on firms’ invention produc-
tivity. The ego network perspective suggests that a
firm’s invention outcomes are linked to the magni-
tude, diversity, and accessibility of knowledge in-
puts, which are in turn critically shaped by the
firm’s ties to its partners and the partners’ ties
among themselves (e.g., Ahuja, 2000; Zaheer & Bell,
2005). In contrast, the global network perspective
has emphasized the benefits of knowledge diffu-
sion through a broader social space, including the
overall structure of firms and their ties within their
industry (e.g., Abrahamson & Rosenkopf, 1997;
Schilling & Phelps, 2007; Uzzi & Spiro, 2005). Ac-
cording to this view, a firm’s ability to invent is
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often intricately linked to the extent to which such
a global network supports or inhibits the flows of
knowledge and ideas throughout an industry. In
one application of this approach, Schilling and
Phelps (2007) found that the degree of “small
worldness” of a global, industry-wide network pos-
itively affects the invention rates of firms in that
industry.

In this article, we suggest that both perspectives
risk providing an incomplete picture of the rela-
tionship between networks and invention because
they do not account for the role of network com-
munities in affecting firms’ generation of new
knowledge. Invention refers to the “development of
a new idea or an act of creation” in a product or
service space (Ahuja & Lampert, 2001: 523). Inven-
tions (instances of invention) are thus critical ante-
cedents for innovation, which entails the commer-
cialization of an invention and thus constitutes the
cornerstone of firms’ entrepreneurial activities
(Scherer & Ross, 1990).

Network communities, in turn, are dense, non-
overlapping structural groups within a network. In
each of these communities, actors are connected
more to each other than to actors outside their
group (e.g., Knoke, 2009: 1697). Figure 1 illustrates
the network community perspective as well as the
two alternative perspectives with diagrams. Net-
work communities are prevalent in arange of interor-
ganizational systems (e.g., Baum, Shipilov, & Row-
ley, 2003; Davis, Yoo, & Baker, 2003; Knoke, 2009).
The value of adopting a perspective that focuses on
the role of network communities lies in identifying
new ways to examine firms’ access to diverse

knowledge inputs in a dynamic system of interor-
ganizational relationships. This third perspective
has thus far escaped the attention of scholars taking
either an ego network or global network perspec-
tive. Specifically, the community perspective is
distinguished by its use of the boundaries of net-
work communities (rather than the properties of
either an ego [e.g., Ahuja, 2000] or a global network
[e.g., Schilling & Phelps, 2007]) to demarcate het-
erogeneous knowledge inputs in interorganization-
al systems. Furthermore, examining network com-
munities allows for a unique focus on the dynamics
of firms’ movement across different communities,
which in turn provides new ways to capture how
heterogeneous knowledge is redistributed through
an interorganizational system over time.

Network communities can impact firms’ inven-
tion productivity for two reasons. The first is re-
lated to our expectation that information, knowl-
edge, and other critical resources are likely to be
more homogeneous within rather than across net-
work communities. Because the combination of
dense connectivity within communities and sparse
connectivity across communities can make it easier
for firms to exchange knowledge with other mem-
bers of their own community, such structures can
homogenize knowledge within communities while
also engendering some knowledge diversity across
communities (Gulati, Sytch, & Tatarynowicz, 2012;
Lazer & Friedman, 2007; Reagans & Zuckerman,
2001). The second reason is that the short network
distances and the reduced transaction costs charac-
terizing dense network structures within commu-
nities can make it easier for firms to access and

FIGURE 1
Contrasting Perspectives

Global Network Perspective

Network Community Perspective

Ego Network Perspective



2014 Sytch and Tatarynowicz 251

utilize the resources of their own network commu-
nity, rather than the more distant resources of the
broader interorganizational network (Coleman,
1988; Greif, 1989; Gulati, 1995).

Nevertheless, the combination of the relative
ease in accessing the knowledge inputs of a firm’s
own community and the community’s structural
isolation from the rest of a network points to a
possible tension concerning how network commu-
nities can affect firms’ invention output. On the one
hand, a network community’s cohesion can facili-
tate the invention productivity of member firms by
allowing them to access a local pool of knowledge
through either their direct ties or their short, indi-
rect ties to other community members (Ahuja,
2000; Haunschild & Beckman, 1998). Having such a
common knowledge “platform” may also offer a
firm a wider and more easily identifiable range of
opportunities for recombining the complementary
knowledge inputs available in its community. On
the other hand, community affiliation can stifle
invention productivity because of the structural
isolation of network communities from one another
and their relative isolation from their broader net-
work. Knowledge, information, and other resources
are likely to flow less freely across communities
that have sparse connectivity and longer network
distances between them. Thus, community mem-
bers can access only a fragment of their industry’s
knowledge base, rather than the more heteroge-
neous knowledge available in the industry’s global
network (Glasmeier, 1991).

In this article, we argue that one way to resolve
this tension is by focusing on the dynamics of net-
work communities. When analyzed through a dy-
namic lens, network communities can offer the
benefit of easy access to knowledge that is both
locally available and diverse. The benefit of diverse
knowledge becomes available as firms move across
different network communities and thus change
the composition of the network communities over
time. Firms can benefit from the membership dy-
namics of network communities either indirectly or
directly. The indirect effect results from turnover of
community members, which exposes incumbents
to the new knowledge and resources new commu-
nity members bring in. The direct effect, in turn,
arises when a firm moves across different network
communities over time, thus gaining direct expo-
sure to the distinct knowledge bases of those com-
munities. Because both of these effects can shape
the diversity of knowledge that is locally available
to a firm as a member of a given network commu-

nity, we expect them both to influence the firm’s
invention productivity. We further examine how
these effects can vary depending on the firm’s
structural position in its community and the over-
all diversity of knowledge across the communities.

Exploring the dynamics of network communities
can result in significant theoretical implications
that extend beyond those offered by the ego net-
work and global network perspectives. First, the
network community perspective advances the ex-
isting perspectives by capturing the distribution of
and access to heterogeneous knowledge and re-
sources in social systems. Most notably, the ego
network perspective links access to diverse knowl-
edge and resources to those ego network positions
that span “structural holes” between otherwise un-
connected actors (Burt, 1992, 2004). We, in turn,
extend this reasoning by suggesting that the bound-
aries of network communities can be used to effec-
tively demarcate the heterogeneity of knowledge
inputs. Understanding the structure and dynamics
of network communities can thus advance the
structural theories of action and outcomes beyond
ego network implications.

Second, the dynamics of network communities
and their impact on firms’ invention productivity
are difficult to capture empirically just by analyz-
ing the characteristics of firms’ ego networks or the
properties of global networks over time. For in-
stance, one can envision a situation in which two
firms maintain the same structures of ego networks,
but one is a member of a highly dynamic network
community with high membership turnover, while
the other is in a static community. Similarly, of two
firms with the same ego networks, one could move
across different network communities frequently,
while the other remained in one community over
time. Furthermore, while a global network can have
stable structural properties, these stable patterns
may conceal the membership dynamics taking
place inside network communities. The network
community perspective can thus locate sources of
informative variance in these situations that might
otherwise be overlooked. Against this backdrop,
consider that the existing network models of behav-
iors and outcomes often leave a lot of unexplained
variance. For example, scholars frequently observe
situations in which actors residing in the same
global network and with the same ego network
structure obtain different outcomes (e.g., Burt,
2012). With our present focus on network commu-
nities, we can begin to address this issue and thus
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enhance the explanatory power of sociostructural
models of action and outcomes.

Taken together, these considerations may lead
scholars to incorporate a new stage in the system-
atic analysis of how network structures affect be-
haviors and outcomes of individual and corporate
actors. This stage would be exploration of how the
composition and the dynamics of network commu-
nities can affect actor outcomes. A focus on net-
work communities is likely to be equally relevant
for scholars examining network change and those
examining network dynamics (e.g., Powell, White,
Koput, & Owen-Smith, 2005; Zaheer & Soda, 2009).
Understanding how network communities evolve
alongside ego networks and global networks can
provide a more comprehensive view of the evolu-
tion of social systems.

Our empirical analyses are based on the network
of interorganizational partnerships in the global
computer industry from 1985 to 2001. This setting
is particularly conducive to exploring our research
question since firms’ invention output in this high-
velocity sector not only is essential for competitive
success and survival, but also depends critically on
their ability to access cutting-edge knowledge in-
puts (Bourgeois & Eisenhardt, 1988; Eisenhardt &
Tabrizi, 1995). More importantly, such access has
often been linked to interorganizational partner-
ships that can offer particularly rich and efficient
channels for knowledge flows throughout an indus-
try (Hagedoorn, 1993; Lee, 2007; Yang, Lin & Lin,
2010). Moreover, firms in the computer industry
have been observed to agglomerate into distinct
network communities (Dedrick & Kraemer, 2005;
Rosenkopf & Schilling, 2007). In this context, it is
therefore reasonable to expect that firms’ invention
productivity will be affected by properties of the
interorganizational network and, in particular, by
network communities within it.

THEORY
Network Communities

Network communities can be found in a wide
range of interorganizational settings. For example,
many interorganizational networks have been iden-
tified as small world systems featuring multiple
dense, nonoverlapping groups of firms that are only
sparsely linked to other groups (e.g., Baum et al.,
2003; Davis et al., 2003). Our perspective on net-
work communities derives from structural ac-
counts that define communities as densely con-

nected and cohesive social groups (or clusters) of
actors, in which the actors are closer to each other
than to other actors in the network. In this tradi-
tion, scholars have applied sociometric techniques,
such as hierarchical clustering, to identify regions
of high density in network structures; they then use
these results to evaluate social proximity among
corporations, state authorities, or elites (Laumann,
Galaskiewicz, & Marsden, 1978; Laumann & Mars-
den, 1979; Nohria & Garcia-Pont, 1991). Conceptu-
ally, this perspective builds on the notion of com-
munities as interactional fields with boundaries
shaped predominately by actors’ interactions and
their resulting social proximity (Kasarda &
Janowitz, 1974; Kaufman, 1959; Turk, 1970; Up-
ham, Rosenkopf, & Ungar, 2010).

While this research has laid an important foun-
dation for subsequent advances in the study of
social systems, it has fallen short of systematically
evaluating network communities as robust drivers
of action. There are, however, two notable excep-
tions. One is the recent study by Greve (2009) that
empirically documents the fact that firms located
in the same network community are more likely to
imitate each other than firms from other communi-
ties in adopting innovations. The other exception
are the two recent studies by Rowley and his col-
leagues (Rowley, Baum, Shipilov, Greve, & Rao,
2004; Rowley, Greve, Rao, Baum, & Shipilov, 2005)
that examine how the heterogeneity of firms in a
community can affect a firm’s decision to leave the
community and show that this heterogeneity can
also affect a member firm’s market performance.
These exceptions notwithstanding, systematic in-
quiry into how firms’ affiliations with network
communities can shape their invention outcomes is
still lacking.

More broadly, the present focus on network com-
munities has important parallels to the studies of
strategic groups and cognitive communities in in-
dustrial economics and strategy. Research on stra-
tegic groups identifies groups of firms as similar
along various dimensions of their strategy, such as
the extent of their advertising and product brand-
ing; operation in regional, national, or multina-
tional markets; and the extent and nature of diver-
sification into different lines of business (Caves &
Porter, 1977: 251). The work on cognitive commu-
nities provides an important extension to this per-
spective by emphasizing that the material aspects
of strategy interact in complex ways with the be-
liefs and perceptions of key organizational decision
makers to shape an industry’s competitive land-
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scape (Porac, Thomas, & Baden-Fuller, 1989; Porac,
Thomas, Wilson, Paton, & Kanfer, 1995). Both of
these theoretical lenses thus offer unique but com-
plementary insights into how the groupings of ri-
vals in the same industry can explain firm-level
performance, beyond industry-specific or firm-spe-
cific factors. As such, these lenses are in alignment
with our focus on network communities, in that we
also point to an important determinant of organiza-
tional outcomes that exists at an intermediate level
of analysis, which in our case is located between
the structure of a firm’s network and the network
structure of an industry.

Nonetheless, our focus on network communities
as densely connected groups of collaborating firms
is distinct from the focus of prior research on
groups of rivals. The characteristics typically as-
cribed to competing firms—similarities in strategic
attributes, overlapping claims to the same resource
space, and cognitive perceptions of rivalry (Ingram
& Yue, 2008; Porac et al., 1995)—are unlikely to
have a one-to-one correspondence with patterns of
collaboration (see, e.g., Thomas & Pollock, 1999). In
fact, since many rivals avoid collaborating with one
another, strategic groups are unlikely to be struc-
turally dense (e.g., Madhavan, Koka, & Prescott,
1998: 454—455). Furthermore, research on groups
of rivals is intended to capture how members of the
same group respond in a similar way to market
disturbances or have power advantages over other
groups in their industry (Caves & Porter, 1977: 252).
In contrast, network communities are expected first
and foremost to shape the flows of knowledge and
its heterogeneity in a broader industry space. As a
result of these conceptual differences, studying
groups of rivals invites an analytic approach dis-
tinct from that needed to study network communi-
ties. While network communities are typically
identified on the basis of dense patterns of col-
laborative interactions among firms (Sytch, Ta-
tarynowicz, & Gulati, 2012), groups of rivals are
captured through clustering based on similarities
in firms’ attribute data or through sociometric
techniques based on a high density of intragroup
rivalry relations (Fiegenbaum & Thomas, 1990;
Porac et al., 1995).

Finally, the parallels between our focus on net-
work communities and studies of industrial dis-
tricts and technological clusters (e.g., Baptista &
Swann, 1999; Saxenian, 1994) are worth noting. It
is certainly plausible that regional collocation or
technological similarity might correlate with pock-
ets of dense organizational interconnectivity, and

we account for these possibilities in our empirical
strategy. Our focus on network communities is
nonetheless distinct and more comprehensive. By
examining the exact patterns of how a market’s
social structure is partitioned into network commu-
nities, we are more likely to capture the complex
interplay of economic, geographical, technological,
and social factors that jointly account for the for-
mation of network communities (e.g., Gomes-
Casseres, 1996; Knoke, 2009; Powell & Sandholtz,
2012). More importantly, we can capture the pat-
terns of interorganizational relationships that sup-
port the ongoing flows of knowledge, information,
and resources that are most likely to affect the
member firms’ invention outcomes (e.g., Breschi &
Malerba, 2005: 13; Cowan, 2005: 31; Whittington,
Owen-Smith, & Powell, 2009: 117). These flows
and the resultant distribution of knowledge and
resources in industry space, which underlie the
effect of network communities of firms’ invention
outcomes, are not related to or conditional on the
geographical proximity of firms.

Network Communities and
Knowledge Heterogeneity

In comparison with both the ego network and the
global network perspectives, the perspective we
take here is an effort to reorient discussion of the
sources of heterogeneity in social systems toward
network communities as demarcating the boundar-
ies of heterogeneous knowledge inputs. For ego
network theorists, it is connecting with many alters
(Powell et al., 1996; Shan, Walker, & Kogut, 1994),
and with those who are not connected to each other
(Burt, 1992), that puts an ego at risk of generating
new ideas. In other words, knowledge heterogene-
ity is demarcated by the size of the ego’s ego net-
work and the patterns of connectivity among the
ego’s contacts. Some proponents of this perspective
go so far as to suggest that network structures be-
yond ego networks may be irrelevant for actors’
creativity (Burt, 2007). In contrast, for global net-
work theorists, the key sources of heterogeneity lie
in the properties of global networks (Abrahamson &
Rosenkopf, 1997; Centola & Macy, 2007; Uzzi &
Spiro, 2005). For example, some of these scholars
have linked the highest levels of creativity to mod-
erate levels of small worldness in a system, arguing
that this structure provides actors with a broad and
quick access to knowledge while also preserving its
overall diversity (Uzzi & Spiro, 2005). In summary,
extant theories suggest that knowledge heterogene-
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ity in social systems—and the concomitant impli-
cations for actors’ invention output—can be cap-
tured by examining the properties of either an ego
network of ties centering on a single actor, or a
global network comprising all actors in a given
social system and their ties.

In contrast to these theories, the community per-
spective offered here suggests that the boundaries
of heterogeneous knowledge inputs in social sys-
tems are most precisely demarcated by the bound-
aries of cohesive network communities among ac-
tors. At the heart of this argument is the expectation
that increased connectivity among actors within a
network community and the resultant information
flows between them can homogenize the knowledge
stocks and flows inside the community (Gulati et al.,
2012; Lazer & Friedman, 2007; Reagans & Zuckerman,
2001). As a result, actors may increasingly tap the
same or similar technological opportunities in their
community and rely on increasingly redundant flows
of knowledge and information.

It is worth noting that the homogenization pro-
cesses within network communities do not neces-
sarily require knowledge and information to flow
strictly through interorganizational ties. Relevant
technological information could also travel outside
of firms’ interactions, for example, through publi-
cations, trade exhibitions, conferences, or the Inter-
net (Porac et al., 1989; Rosenkopf, Metiu, & George,
2001). Nevertheless, it is reasonable to expect that
the presence of a direct tie between two firms
makes the diffusion of technological knowledge
more likely, particularly in its more tacit and com-
plex forms. The presence of an interorganizational
tie allows for direct exposure, observation, demon-
stration, and experience of new knowledge, which
are often essential for effective knowledge transfer
between firms (Mowery et al., 1996; Rogers, 2003).
Furthermore, interorganizational ties engender
both formal governance (Mayer & Argyres, 2004)
and informal interactions (McEvily & Marcus,
2005; McEvily, Perrone, & Zaheer, 2003), which
jointly enable knowledge and information to travel
more effectively across organizational boundaries.

The homogeneity of knowledge within network
communities can also be partly related to patterns
of “homophilous” selection in partnership forma-
tion wherein interorganizational ties are more
likely to form between two similar firms (Powell et
al., 2005). This possibility in turn suggests that
members of a given network community could be
more similar to each other than to other firms in the
network. Many of these similarities, such as having

similar organizational cultures or similar experi-
ence in interorganizational partnerships, could
pull organizations toward each other while also
helping them avoid competitive frictions (Lavie,
Haunschild, & Khanna, 2012; Wang & Zajac, 2007).
These similarities could also make members of the
same network community more prone to identify-
ing and focusing on similar technological and mar-
ket opportunities, and to using similar ways to
seize these opportunities. In support of this conjec-
ture is evidence that, for example, decision makers
in similar companies may over time develop simi-
lar mental models of their market and competitive
environment (Porac et al., 1989, 1995).

Although the knowledge available inside a given
network community is likely to be rather homoge-
neous because of the higher intensity of knowledge
flows and greater similarity among community
members, a substantial degree of knowledge hetero-
geneity can still be preserved across different com-
munities. In contrast to the high density of connec-
tions among firms within the same community, the
network space between communities is described
by rather sparse connectivity, which lowers the
intensity of knowledge transfer, exchange, and ab-
sorption across community boundaries. Further-
more, firms that belong to different communities
are likely to exhibit lower similarity than those that
belong to the same community. Taken together,
these features can both preserve and reinforce the
heterogeneity of knowledge in different network
communities.

Thus, it appears that whether a given network
community facilitates or constrains the invention
productivity of its members is related in part to the
degree to which these firms are exposed to the
broader knowledge inputs of the global network.
Hence, one way to systematically examine the ef-
fects of network communities on firms’ invention
productivity is to identify which specific features
of a community can best enable firms to access
diverse knowledge and resources within a global
network. We explore how the knowledge base of a
given network community can get updated through
the movement of firms across different communi-
ties over time. The indirect effect of such updating
for a member firm can be captured when its network
community acquires a new member with a different
stock of knowledge and expertise, which can poten-
tially enhance the knowledge base available to com-
munity members. A direct effect is evident when the
firm moves across network communities over time,
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thus gaining exposure to heterogeneous knowledge
and resources.

We further examine to what extent these effects
are moderated by the structural position that a firm
holds in its network community and by knowledge
diversity across communities, as reflected by the
evolving properties of their global network. Taken
together, all these effects allow us to establish a
more compelling link between the effects of mem-
bership dynamics in network communities and the
resultant updates to the knowledge base of commu-
nities. Our overall argument also identifies some
critical interactions between the characteristics of
ego and global networks on the one hand and the
properties of network communities on the other,
thus leading to a more encompassing, multilevel
analysis of social structures for understanding
firms’ invention outcomes.

Membership Dynamics in Network Communities

Membership turnover. Several recent studies
have shown that interorganizational systems are
characterized by frequent entries and exits of firms,
as well as by pronounced changes in the patterns of
interorganizational tie formation, all of which can
affect the distribution of ties and regions of high
density in a global network (e.g., Greve, Baum,
Mitsuhashi, & Rowley, 2010; Rosenkopf & Padula,
2008; Rowley et al., 2005). These occurrences are
likely to propel changes in the membership com-
position of network communities over time. Schol-
ars have also noted that compositional variation in
social groups can have meaningful implications for
members’ invention outcomes and growth, since
such diversity stimulates experimentation, flexibil-
ity, and new ideas (e.g., Florida, 2002; Porter, Whit-
tington, & Powell, 2005; Simmel, 1950). Composi-
tional stability, in contrast, is likely to have the
opposite effect.

A network community characterized by some
membership turnover may thus be able to avoid the
homogenizing tendencies characterizing network
communities. Such membership turnover can be
realized through vacancy chains, wherein the exits
of some companies create a set of community mem-
bership opportunities cascading through a network
(White, 1970). The departure of old members and
the arrival of new ones can reduce conformity pres-
sures and expose community incumbents to out-
side ideas, diverse resource profiles, novel collab-
oration routines, and different strategic agendas, all
of which can help update the community’s knowl-

edge base and enhance the invention activities of
community members.

As the rate of membership turnover increases,
however, a community may reach a point of dimin-
ishing returns, where the costs of high turnover
start to exceed the benefits. High levels of turnover
in a community may threaten the stability of its
collaborative routines and established knowledge-
sharing practices, since trust among corporate actors
takes a significant amount of time to develop. In the
early stages of a relationship, actors are reluctant to
make themselves vulnerable to one another, even
though this may be required for a trusting relation-
ship to develop (Blau, 1964). Decreasing levels of
trust within a community as a result of too much
change may in turn increase the costs of forming and
maintaining interorganizational ties, thus curbing
firms’ access to the knowledge and resource pools
located outside of their organizational boundaries
and raising the costs and risks of firms’ inventions
(Zaheer, McEvily, & Perrone, 1998). At least some
member firms, however, could benefit from the de-
velopment of a resource base unique to that commu-
nity; this could include common training of person-
nel or the development of a shared technological
platform. The development of such a resource base
could nonetheless be interrupted or otherwise under-
mined if excessive membership turnover disrupts the
continuity of intracommunity collaboration and its
cohesion.

In sum, it is reasonable to expect that a firm will
derive the greatest benefits from being in a moder-
ately dynamic network community. Moderate mem-
bership turnover reduces “lock-in” effects by opening
up and updating a community’s knowledge base,
without imposing the costs and risks associated with
excessive turnover. Hence, we propose:

Hypothesis 1. The turnover of community
members in a firm’s network community has
an inverted U-shaped effect on the firm’s in-
vention productivity: The firm attains the high-
est invention productivity at a moderate rate of
membership turnover.

Firm movement across network communities.
Rather than staying in the same network commu-
nity over time, a firm can obtain diverse knowledge
inputs by moving across different network commu-
nities. A firm may move across communities as a
result of the actions of other firms, which may
propagate macrolevel structural change in the net-
work in which the communities reside. In some
cases, moving across network communities could
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be the result of a firm’s own pursuit of better re-
sources or opportunities. While research on the
implications of firms’ movement across network
communities has been limited, studies of labor mo-
bility have demonstrated that people who change
jobs moderately often acquire the best positions in
the labor market: they are more likely to locate job
opportunities through short distances in the social
network and to offer relevant job information to
others. By contrast, staying in the same job for too
long limits a person’s exposure to new opportuni-
ties, while excessive job hopping can limit the abil-
ity to capitalize on the information and opportuni-
ties offered by each different group of colleagues
(e.g., Granovetter, 1974: 85-92).

There are reasons to believe that a similar curvi-
linear relationship could describe the link between
a firm’s movement across network communities
and its invention outcomes. Moderate mobility
across communities could expose the firm to a di-
verse spectrum of inputs for invention, thereby
helping it maintain a robust knowledge base for
generating new ideas. In contrast, excessive move-
ment across network communities can become a
liability for at least three reasons. First, it can raise
the costs of integrating the diverse knowledge
stocks while also limiting the amount of organiza-
tional resources and attention that the firm can
devote to any given recombinant activity (Ocasio,
1997). Second, excessive mobility could also raise
the costs of social integration by conferring perma-
nent newcomer status on any firm without a local
collaborative history (Gulati, 1995). Such a social
position could then raise the transaction costs of
accessing the community’s knowledge stocks, thus
curbing the firm’s ability to utilize that knowledge.
Finally, in at least some cases, a firm’s excessive
mobility across network communities could result
in a less coherent technological and collaborative
profile (Zuckerman, Kim, Ukanwa, & von Ritt-
mann, 2003), making it harder for community
members to discern the value of the knowledge
offered by a newcomer. This could result in further
hindering the transfer and application of knowl-
edge by creating ambiguity around the new firm
and limiting its ability to engage in full-fledged
collaborations with community incumbents.

In sum, we expect that moderate levels of mobil-
ity across network communities offer the best con-
ditions for a firm to achieve high invention produc-
tivity. Such moderate movement can provide the
firm with sufficiently diverse knowledge inputs for
invention while also enabling it to absorb and uti-

lize the new knowledge more effectively. Hence,
we propose:

Hypothesis 2. A firm’s movement across differ-
ent network communities has an inverted U-
shaped effect on the firm’s invention produc-
tivity: The firm attains the highest invention
productivity if it moves across network com-
munities at a moderate rate.

Membership Dynamics and Firms’ Position in
Network Communities

Our predictions thus far imply that all members
of a given network community can benefit equally
from moderate community membership turnover
and moderate movement across network communi-
ties. However, even in one network community,
some firms may occupy more advantageous struc-
tural positions and thus have privileged access to
the community’s knowledge and resources (Dahl-
ander & Frederiksen, 2012). If the benefits of mod-
erate membership turnover and moderate move-
ment across different communities are indeed
linked to changes across the knowledge base of a
given community, then it is possible that a firm’s
invention benefits will vary depending on its posi-
tion in the network community.

One central distinction that can critically shape a
firm’s access to the knowledge and resources of its
network community is the extent to which the firm
occupies a core location in its community. This
distinction helps explain whether the firm is
strongly or weakly embedded in its network com-
munity. A core firm is strongly embedded by virtue
of holding multiple ties to many firms, both central
and less central, in the network community. In
contrast, a peripheral firm is weakly embedded be-
cause it holds fewer ties to other community mem-
bers and is significantly less likely to connect to
more central community members (Borgatti & Ev-
erett, 1999).

These differences in firms’ structural positions
can be consequential for their ability to capitalize
on the knowledge base of a network community.
Actors positioned in the core of network structures
tend to get superior access to the knowledge and
resource base of their social system (Abrahamson &
Rosenkopf, 1997; Mintz & Schwartz, 1981). A core
firm can exercise a wider reach across its network
community, one that includes other core and pe-
ripheral members. This, in turn, can provide the
firm with a broader and quicker access to the local
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knowledge base and resources in the network com-
munity. By having multiple ties in the network com-
munity, core firms can also ensure that they have
redundant channels for accessing the knowledge base
of the network community, thus opening wider con-
duits for knowledge flows and making themselves
less vulnerable to the idiosyncrasies of any given
partner or interorganizational relationship.

As the knowledge base of a community gets up-
dated through membership turnover, a core firm is
likely to reap disproportionate benefits for its in-
ventive activities by virtue of getting more effective
and efficient access to the influx of new knowledge.
Similarly, as the firm moves across different net-
work communities, occupying core positions in
those communities is likely to provide the firm
with a broader access to the diverse knowledge and
resources in those communities. It can thus accu-
mulate a better knowledge endowment over time.
Thus, holding core positions as a firm moves across
network communities is likely to create better op-
portunities for the firm to effectively recombine
knowledge from its prior community affiliations.

In sum, we expect that the extent to which a
firm’s invention outcomes can benefit from the
membership dynamics of its network community
and its movement across different network commu-
nities depend on the firm’s position in its network
community. Specifically, we propose:

Hypothesis 3a. The inverted curvilinear rela-
tionship between membership turnover in a
community and a firm’s invention productivity
is moderated by the firm’s core/periphery loca-
tion in the community: A core firm benefits
more from a moderate rate of membership
turnover than a peripheral firm.

Hypothesis 3b. The inverted curvilinear rela-
tionship between a firm’s movement across
network communities and the firm’s inven-
tion productivity is moderated by the firm’s
core/periphery location in the communities
it encounters: A firm occupying a core posi-
tion benefits more from a moderate rate of
movement than a firm occupying peripheral
positions.

Membership Dynamics and Global
Network Reach

Our claim that the benefits of increased knowl-
edge diversity are best conferred by moderate rates
of community membership turnover and move-

ment across different communities rests on the as-
sumption that network communities can serve as
pockets of diverse and nonredundant knowledge
inputs. However, the heterogeneity of the knowl-
edge in different network communities depends on
whether these communities can remain structur-
ally separated from one another across the global
network. Since members of different network com-
munities are either entirely disconnected from one
another or are only indirectly connected through
long network paths, the flows of knowledge and
information are likely to be more intense within,
rather than across, network communities. This im-
plies that remaining structurally separated from
one another can help communities preserve their
relatively diverse knowledge and resource bases
(Gulati et al., 2012; Lazer & Friedman, 2007).

The degree of global network reach in a network
helps describe the overall separation of actors in
the network.! Greater global network reach indi-
cates that firms in the network can generally reach
one another through shorter network paths. By the
logic above, increases in the average global reach of
firms in a global network can diminish the relative
distinctiveness of the knowledge bases of different
network communities. One reason for this is that
direct connectivity can catalyze a more robust and
continuous exchange of information and resources
between firms. Shorter network paths are effective
conduits for flows of knowledge between network
communities. This, in turn, can familiarize firms
with the resources of different communities and
even allow them to internalize some of these re-
sources directly. As a result, the knowledge base of
a given network community can become more eas-
ily accessible to a wide range of nonmember firms.
Furthermore, new knowledge produced in a given
network community may become more similar to
the knowledge produced in other communities as
all this knowledge builds on increasingly homoge-
neous industry-wide knowledge. This argument
draws in part on work suggesting that the patterns

' Analytically, global network reach is defined as the
average shortest distance (geodesic) between any two
actors in a focal network. To capture the distance be-
tween pairs of completely disconnected actors, this mea-
sure is based on inverted network distance, or network
reach (Borgatti, 2006), which sets the distance between
completely disconnected actors to zero in the limit.
Global network reach thus indicates how close (rather
than how far) any two actors are to each other (e.g.,
Schilling & Phelps, 2007).
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of knowledge flows in a network can shape avail-
able knowledge stocks (Baum, Cowan, & Jonard,
2010; Gulati et al., 2012; Lazer & Friedman, 2007).

In line with this argument, we expect that as
firms become more reachable to one another in the
global network of an industry, network communi-
ties may lose their distinct advantage of acting as
pockets of diverse knowledge in the industry.
Thus, even if firms manage to gain exposure be-
yond their own network community, they are likely
to draw on an increasingly redundant pool of
knowledge and resources coming from other com-
munities. As a result, the invention benefits asso-
ciated with a firm’s membership in a moderately
dynamic network community, or with moving
across different network communities over time at
a moderate rate, may decline. Hence, we propose:

Hypothesis 4a. The inverted curvilinear rela-
tionship between community membership
turnover and a firm’s invention productivity is
moderated by global network reach: The posi-
tive effect of a moderate rate of membership
turnover is weaker at higher levels of global
network reach.

Hypothesis 4b. The inverted curvilinear rela-
tionship between a firm’s movement across
network communities and the firm’s invention
productivity is moderated by global network
reach: The positive effect of a moderate rate of
movement is weaker at higher levels of global
network reach.

DATA AND METHODS

In our empirical analyses, we used data on the
network of interorganizational partnerships in the
global computer industry from 1981 to 2001. To
obtain these data, we used the MERIT-CATI data-
base, which provides a comprehensive coverage of
partnerships in high-technology sectors and has
been extensively used in prior research (e.g.,
Gomes-Casseres, Hagedoorn, & Jaffe, 2006; Gulati,
1995; Hagedoorn, 1993). These partnerships can
take a variety of forms, including joint ventures,
contractual collaborative agreements, and licensing
deals. Since most of these partnerships entail some
form of knowledge flow related to the development
of new products or technologies, they are often
described as technology alliances (Rosenkopf &
Schilling, 2007). In these partnerships, the person-
nel, the goal structures, the incentives, and the
formal and informal organizational support mech-

anisms are geared toward the acquisition and trans-
fer of technological expertise and knowledge. Fo-
cusing on the network constituted by these
partnerships is therefore particularly useful for ex-
amining firms’ access to technological knowledge
and its effects on firms’ invention productivity
(e.g., Ahuja, 2000: 435; Rogers, 2003: 319-320; Za-
heer & Soda, 2009: 13).

Because computer firms rarely formed partner-
ships prior to the 1980s (Hagedoorn, Cloodt, & Roi-
jakkers, 2006), we used 1981-2001 as the period of
the study to capture the evolutionary trajectory of
the interorganizational network of these firms from
its very inception. Given our focus on the computer
industry, we considered only those ties in which
one or both partners were classified as computer
firms. To do so, we tracked the firms’ SIC codes and
cross-checked them with the descriptive informa-
tion obtained from business press and company
websites. In addition, we used the description of
the activities of each partnership to ensure that the
database classified the partnership as a technology
alliance whose objective was to develop new com-
puter products, services, or technologies. These cri-
teria produced a sample of 410 unique computer
firms. About 60 percent of these firms were in
manufacturing; 30 percent were in services; and 10
percent were in embedded systems (such as “firm-
ware” or mobile applications). The average number
of concurrent partnerships held by a single firm in
any given year was 3.6, which includes both hori-
zontal and vertical relationships.?

To reconstruct the industry-wide partnership
network, we followed the analytic procedures es-
tablished in prior research. First, any two firms
forming a partnership were considered to be con-
nected through a dyadic tie. Thus, if the partner-

? Given the broad enumeration of the interorganiza-
tional network in this study and the inclusion of both
horizontal and vertical ties, it is important to note that
the concept of network community differs from the con-
cept of strategic block. Strategic blocks capture the con-
nectivity among rival firms and have been found to ho-
mogenize firms’ capabilities and performance across
blocks in an industry space (Nohria & Garcia-Pont, 1991:
116-117, 122). In contrast, network communities are
based on the patterns of collaboration among all compa-
nies in an industry, help reveal the flows of knowledge in
the industry, and associate community boundaries with
heterogeneous knowledge endowments. Network com-
munities therefore play an influential role in shaping
between-firm differences in invention outcomes.
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ship consisted of more than two firms, we decom-
posed it into dyads (Stuart, 1998). Second, since
alliance terminations were rarely reported and
were indicated for only about 10 percent of the
partnerships, we followed prior research and lim-
ited the duration of partnerships to five years (e.g.,
Gulati & Gargiulo, 1999; Kogut, 1988; Lavie &
Rosenkopf, 2006; Stuart, 2000). Using 1985 as the
first year for which we reconstructed the partner-
ship network, we produced 17 yearly observations
of the evolving network until 2001.

The global network in the computer industry
grew steadily from 27 firms in 1985 to the maxi-
mum size of 218 firms in 1996. It subsequently
declined to 191 firms in 2001. In keeping with the
characteristics of interorganizational networks ob-
served across a range of industries (Rosenkopf &
Schilling, 2007), this global network had some dis-
connected components. The number of these compo-
nents ranged from 10 in 1985 to 47 in 1996. One of
these components was significantly larger than the
others, comprising on average 60 percent of the firms.
In contrast, the other components were smaller and
mostly comprised just two or three firms. Figure 2
illustrates the global network in 1994.

Dependent Variable

We captured the invention productivity of firms
using the counts of their successful patent applica-

FIGURE 2
Structure of the Global Network, 1994
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tions. Patent applications provide an externally
validated measure of invention (Griliches, 1990)
and are extensively used in the studies of firms’
invention productivity in technology-intensive sec-
tors (e.g., Ahuja, 2000; Fleming, King, & Juda, 2007;
Gomes-Casseres et al., 2006; Stuart, 2000).2 We de-
fined the number of patents, t + 1, as the total
number of patents a focal firm applied for in year
t + 1. We accounted only for patent applications
that were eventually approved. Since patents can
have different review lags, we considered the year
of application as the point at which an invention
was produced, even if the patent was granted at a
later time. We extracted the patent data from the
NBER database of US patents (Hall, Jaffe, & Trajten-
berg, 2001). Even though about one-third of our
network consisted of firms from outside the US, two
factors motivated focusing on US patents. First, em-
pirical evidence suggests that many foreign firms ap-
ply for US patents simply because the US market is so
large. As a result, US patents constitute a major share
of all global patents, reflecting the breadth of inven-
tion activities of companies across the globe (Grili-
ches, 1990). Second, using the patents from a single
country ensures analytic consistency in terms of the
legal norms and regulatory regimes (Ahuja, 2000).
Given the time frame of our study and our focus
on the computer industry, we extracted patents
filed between 1986 and 2002 that were classified
under category number (no.) 2, “computers & com-
munications.” This technological category encom-
passes the following four subcategories: no. 21,
“communications”; no. 22, “computer hardware &
software”; no. 23, “computer peripherals”; and no.
24, “information storage” (Hall et al., 2001: 41).
These criteria led us to identify 143,500 patents
issued to the 410 firms in the sample, yielding an
average of 350 patents per firm. The distribution of
patents across firms was skewed, with the top 10
percent holding over 80 percent of patents.

Identification of Network Communities

To test our hypotheses, we first analyzed the
network in each year for the occurrence of cohe-

3 By focusing on a single industry and estimating firm-
level fixed effects, we were able to eliminate a significant
degree of unobserved heterogeneity related to firms’
varying propensity to patent their inventions (Ahuja,
2000; Schilling & Phelps, 2007).
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sive, nonoverlapping communities of firms.* Hav-
ing detected these communities, we then traced
their evolution over time. To identify communities
in each year, we followed the approach of Girvan
and Newman (2002), one of the most robust meth-
ods of community identification (Danon, Diaz-
Guilera, Duch, & Arenas, 2005), which identifies
communities by assessing the difference in com-
munity structure between the actual network and a
random network of the same size and degree dis-
tribution. To quantify this difference, the method
defines network modularity as 1/E 3 (ex — lewdl),
where E is the total number of ties in the network,
exk is the number of ties in the kth community, and
[ex] is the expected number of such ties in the
random network. To ensure robust results, modu-
larity is maximized over all possible community
assignments and compared to a large number of
random networks for assessment of its statistical
significance (Guimera & Amaral, 2005). Values
greater than 0.3 typically indicate a strong degree of
community structure that could not be obtained by
chance (Newman, 2003).

In addition to offering a statistically validated
partitioning of the network, another advantage of
this procedure—compared to some alternative
methods of community detection (e.g., hierarchical
clustering)—is that it does not require any a priori
assumptions regarding, for instance, the number of
communities. Providing such information ex ante
is difficult in our context, where a range of social,
technological, and economic forces shape the net-

* While in this study we conceptualize network com-
munities as nonoverlapping groups of firms, some earlier
theorists studied overlapping social groups (Blau &
Schwartz, 1984; Simmel, 1955). These theorists typically
view social structure through the lens of multiple social
characteristics of actors that result from their occupying
different social roles or participating in different social
contexts at the same time. For example, actors can simul-
taneously be colleagues and friends, and thus reside in
different, but overlapping, social worlds of work and
friendship. In contrast, in our scenario we follow prior
research (e.g., Burt, 2005; White, 1961) in isolating com-
munities of firms formed by realized interactions among
specific sets of corporate actors (McPherson, Smith-
Lovin, & Cook, 2001). In many sparsely connected social
systems, these communities typically do not overlap
(e.g., Girvan & Newman, 2002; Shipilov, Li, & Greve,
2011; Sytch et al., 2012). Note also that such nonoverlap-
ping communities need not result in a fragmented social
structure, since they are often tied together by sparse
bridging relationships.

work’s community structure. This, in turn, makes it
difficult to predict the boundaries of network com-
munities using some observable attributes of firms,
such as their technological or market niches. In
addition, specifying communities ex ante can bias
subsequent statistical estimation and results.

Our analysis of community structure focused on
the global network’s main component, which com-
prised on average 110 firms. By contrast, the re-
maining components were substantially smaller
and comprised on average only 2.2 firms, thus pre-
cluding the formal analysis of their community
structure. However, we estimated that the average
density of ties in the smaller components (defined
as the ratio of existing to all possible ties) was 0.86,
and the average path length was 1.24. These values
mirrored those estimated for the network commu-
nities identified in the main component (around
0.81 and 1.28, respectively). We therefore consid-
ered the smaller components to be stand-alone
communities. Nonetheless, to make sure that this
approach did not affect our results, we also con-
trolled for whether a firm was affiliated with the
main component in any given year and whether it
was in a community that consisted of a single dy-
adic partnership.

Our analyses revealed the existence of a strong
community structure throughout the period of the
study. The value of modularity varied between 0.36
in 1985 and 0.74 in 1990. The average value was
0.63 over all 17 years, thus substantially exceeding
the recommended threshold of 0.3. Furthermore,
our tests indicated that the identified community
structure was statistically significantly different
from random in all years (at p < .001).” The total
number of communities in the global network
ranged from 11 in 1985 to 55 in 1996. The size of a
typical network community ranged from 3 firms in
1985 to 8 firms in 1992. The mean density of ties
within the communities was 0.81, while the mean
density of ties in the entire network was less than
0.05. Furthermore, the shortest network distance
between any two community members was 1.28
ties, while the shortest distance between any two

® We compared the value of modularity for the actual
network with the mean value estimated for a comparable
random network in each year. The values for the random
network were estimated over 1,000 randomizations using
the size and degree distribution of the actual network.
The tests indicated that the identified community struc-
ture was statistically significantly different from random
(p < .001).
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firms in the main component was 4.14 ties. Overall,
these results confirm our expectation that the identi-
fied communities reflected pockets of strong rela-
tional cohesion among firms. Figure 3 shows the
structure of network communities in 1996 as an
example.

Knowledge Heterogeneity within and across
Network Communities

In addition to examining the structural character-
istics of network communities, we explored
whether the identified network communities also
represented pockets of homogeneous knowledge
within the industry. A thorough test of this argu-
ment would entail conducting a detailed analysis
of the contents of knowledge stocks and flows
among firms. In an interorganizational network of
the size analyzed in this study, however, such anal-
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ysis was impossible. Nevertheless, one useful
proxy for testing whether the communities pos-
sessed more homogeneous knowledge than the rest
of a network was to analyze the composition of
patent stocks and patterns of patent citations
within and across the identified network commu-
nities. To do so, we conducted two sets of analyses.
First, we analyzed the patterns of patent citations
and the distribution of patents across different
technological classes within dyads. This analysis
indicated that any two firms from the same network
community were on average twice as likely to cite
each other’s patents as the patents of firms located
outside of the community (p < .001). Furthermore,
the patents owned by firms from the same network
community were more likely to be distributed
across a similar set of three-digit technological
classes (p < .001). Finally, the technological classes
of the patents that either cited (i.e., in forward

FIGURE 3
Community Structure of the Main Component, 1994
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citations), or were cited (i.e., in backward citations)
by, the patents owned by members of the same
network community were more similar (p < .001)
than the patent citations—whether forward or
backward—for any two firms from different net-
work communities. In additional statistical analyses,
we found that these patterns of homogeneity were
related to both (i) homogenization of firms’ knowl-
edge bases following membership in the same com-
munity and (ii) selection of firms with more similar
knowledge bases into the same community.

Second, we used a computer simulation to ex-
plore the extent to which not only dyads but also
entire network communities represented more ho-
mogeneous knowledge stocks. To do so, we ran-
domly redistributed firms over the network com-
munities in each year, while keeping the overall
number of communities and the size of each com-
munity fixed. We repeated this procedure 1,000
times for each year and then used the results to
compute the baseline similarity of the patent stocks
and the forward and backward patent citations of
firms within each community (using an inverse of
Blau’s diversity metric). Subsequently, we com-
pared the real and the baseline similarity scores
statistically using a z-score, defined as (S - [S])/a,
where S is the actual similarity of firms’ patents
and patent citations with respect to three-digit
technological classes, [S] is the baseline similarity
estimated over 1,000 randomizations of the net-
work’s community structure, and o is the standard
deviation from [S]. Results indicated that the dif-
ferences were statistically significant (p < .001),
thus suggesting that the knowledge stocks of net-
work communities were indeed more homoge-
neous than one could expect by chance.

Dynamics of Network Communities

To trace the dynamics of the identified network
communities over time, we matched them over
contiguous years on the basis of the extent to which
they consisted of the same firms. Formally, we de-
fined the overlap between two communities as
(C; NG 1)(C; UG yyy), where C; N Gy q Was
the number of unique community members shared
by both communities from year ttot + 1 and C; , U
C;, 1+, was the number of all community members
present in both communities. A value of 0 indi-
cated that communities did not share any members,
and 1, that they shared all members.

Using this rule, we considered C; , and C; ,,, as
a single dynamic community if the overlap be-

tween them was at least 30 percent and no other
match provided a greater degree of overlap.® Failing
to satisfy the 30 percent requirement meant that the
community in year f would be considered dissolved
and the community in f + 1 would be considered
new. We identified 126 distinct communities over
1985-2001. The lifespan of network communities
varied significantly from 1 to 12 years, with the aver-
age being about 4 years. Similarly, firms varied sig-
nificantly on how long they stayed affiliated with a
given community; this number ranged from 1 to
9 years (2.5 years on average).

Independent Variables

To test the effect of membership turnover in a
firm’s community on its invention productivity
(Hypothesis 1), we defined membership turnover as
the extent to which the community comprised dis-
tinct firms in year t compared with the previous
year. We measured this variable as the inverse of
community overlap across both years—formally,
1—(C; -1 N C; JIC; -1 U C; ). To test the effect
of a firm’s movement across different network com-
munities (Hypothesis 2), we defined prior commu-
nity affiliations as the number of distinct commu-
nities in which the firm was a member prior to ¢,
excluding the current community. This variable was
set to 0 if the firm had no prior community affiliations
(e.g., it just entered the network in year ). In line with
Hypotheses 1 and 2, we specified linear and squared
effects for both of these predictors.

To test the moderating impact of a firm’s position
in its network community on membership turnover
(Hypothesis 3a) and on the firm’s movement across
different communities (Hypothesis 3b), we inter-
acted the curvilinear effects of membership turn-
over and prior community affiliations with a firm’s
within-community coreness. To define the actor-
centric measure of coreness, we followed Borgatti
and Everett (1999) and used the continuous core/
periphery model. This model, which captures to

% One possibility is also that an existing network com-
munity could break up into two (or more) future commu-
nities of roughly equal sizes. This possibility would re-
quire us to extend our analysis to more complex
evolutionary patterns of communities, including their
branching and reunification (see also Vedres and Stark,
2010). Our data did not provide any evidence of such
nonlinear chains, most likely because our conceptualiza-
tion of network communities as nonoverlapping social
groups does not support such processes.
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what extent a firm is positioned closer to the core
than to the periphery of its network community, is
more precise than the discrete model of core/pe-
riphery (for a similar approach, see Cattani and
Ferriani [2008]). As Borgatti and Everett (1999: 392)
indicated, it is reasonable to expect that a core firm
will occupy a more central location in its network
community. However, a central firm does not nec-
essarily have to be core. In our context, the latter
could occur when a peripheral firm connects with
numerous other peripheral members of its network
community, or with members of other network
communities. In such a case, the peripheral firm
may obtain a moderate to high level of centrality
but still remain outside the core of its network
community. The measure of coreness is thus more
likely than alternative measures to capture the ben-
efits that accrue to a firm’s central position in its
network community.

To test Hypothesis 3a, we captured a firm’s core-
ness in its current network community. To test
Hypothesis 3b, by contrast, we captured the time-
varying average coreness of a firm, measured over
all of its prior community affiliations up to the
focal year. To obtain this measure, we calculated
the firm’s within-community coreness in each year
and divided the sum by the number of years the
firm spent in the network, until t. This approach
provided an effective way to account for the likely
positive moderating effect of a firm’s moving into a
more core location versus the likely negative effect
of its moving into a more peripheral location (indi-
cated by greater and lower average coreness, re-
spectively). In addition, this approach also pro-
vided a more precise way to capture the full
moderation effect of coreness with respect to all of
a firm’s prior community affiliations, rather than
just the recent one.

Finally, to test the moderating impact of global
network reach on community membership turn-
over (Hypothesis 4a) and firms’ movements over
different network communities (Hypothesis 4b), we
interacted the curvilinear effects of membership
turnover and prior community affiliations with
global network reach, specified as the average net-
work reach between any two firms in a network
(Borgatti, 2006). Formally, the specification was
VN(N, — 1)2;2}+; Vd;;, where N, was the size of the
network in year t and d;; was the shortest network
distance between two firms i and j. This measure
varied between 0 and 1, with higher values indicat-
ing greater global network reach. To test Hypothe-

sis 4b, rather than capturing current global network
reach in year ¢, we captured the time-varying effect
of a firm’s average global network reach, which was
measured over the firm’s entire history of commu-
nity affiliations. We calculated global network
reach for each year during which the firm was
present in a network and then divided the sum by
the total number of years the firm spent in the
network, until ¢. This approach provided a more
precise way to model the moderating effect of the
change in global network reach and allowed us to
capture moderation over the entire history of a
firm’s prior community affiliations.

Control Variables

To ensure robust results, we controlled for a
range of other possible firm-level and community-
level determinants of a firm’s invention productiv-
ity. First, using data from Compustat, Worldscope,
and Orbis, we controlled for firm size (measured as
headcount), financial condition (measured as net
income and return on assets [ROA]), and invest-
ments in R&D (measured as R&D spending). These
variables were logged to correct for their distribu-
tional skewness. Second, to control for the effect of a
firm’s ego network position on its invention produc-
tivity, we specified two static measures: (i) logged
degree centrality, measured as the total number of ties
held by the firm in year ¢, and (ii) ego network density,
the total number of ties between the firm and its
partners and among the partners themselves, divided
by the number of all possible ties among these firms.
In addition, we also specified two dynamic measures:
(i) ego network turnover, measured as the degree of
membership turnover in a firm’s ego network (de-
fined as 1 minus the fraction of the same firms in the
ego network from year ¢ — 1 to t), and (ii) ego network
growth, the change in the firm’s degree centrality
from t—1 to t. In line with our nonlinear prediction of
the effect of community membership turnover, we
expected the effect of ego network turnover on firm
invention output to follow an inverted U-shape. The
latter variable also helped isolate the effect of ego
network turnover from the mere growth or shrinkage
of an ego network. Finally, we used the binary vari-
able main component firm to control for a firm’s
position inside the main component of a network.

Third, we accounted for the firm’s position in its
network community by controlling for the main
effect of within-community coreness (as defined
above). In addition, we controlled for the firm’s
position with respect to other network communi-
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ties by capturing the dispersion of its partners
across different communities. To this end, we de-
fined cross-community participation as 1 minus
the diversity of partners’ own communities, mea-
sured using the Blau index. This control varied
between 0 and 1, yielding higher values for those
firms whose partners were distributed over a
greater number of different network communities.”
Further, to control for a firm’s tenure in its current
network community, we used the binary variable
community incumbent. This control was equal to 1
if the firm was a member of the same community in
the previous year and 0 otherwise.

Fourth, we controlled for a range of structural
characteristics of the firm’s network community.
We specified community size as the total number of
firms that were members of the firm’s network com-
munity in year ¢, including the focal firm. Commu-
nity centrality, in turn, reflected the number of
other unique communities to which the firm’s com-
munity was connected in year t. We defined com-
munity constraint as the extent to which the neigh-
boring communities were also connected among
themselves (cf. Burt, 1992; Reagans, Zuckerman, &

7 As noted above, in our theory and analyses, we con-
ceptualize and measure network communities as non-
overlapping groups of firms. To explore the robustness of
this theoretical premise, we conducted exploratory anal-
yses of the data to explore more ambiguous cases, in
which a given firm could be assigned to more than one
community in a given year by virtue of maintaining a
large number of ties to communities other than its own.
We found that, overall, these cases were extremely rare.
First, there were only ten firm-year observations (i.e., just
over 1 percent of the sample)in which a firm’s total
number of ties to other communities exceeded the num-
ber of ties to its own community. Second, there was not
a single case in which a firm’s number of ties to a given
external community (0.42 on average) exceeded the num-
ber of ties the firm had within its own community (3.1 on
average). These results indicated that if we were to relax
the assumption of nonoverlapping communities and al-
low for cross-community overlaps, their sparse external
connectivity would put firms into unequivocally periph-
eral positions in other communities. Therefore, even
without modeling community overlaps explicitly, our
present analytic approach allowed us to account well for
firms’ positions with respect to multiple communities.
We did so by accounting for (a) how firms connect within
their focal community, using within-community core-
ness, and for how they reach out to other communities in
their network, using cross-community participation,
which accounts for firms’ peripheral positions in other
network communities.

McEvily, 2004). For any community i, this index
was defined as 2j+i(e; + Zreijeqey)’, where g; was
the fraction of i’s ties with community j, &; was the
fraction of 1’s ties with community k, and &;; was
the fraction of k’s ties with j. A higher value of this
control indicated a more structurally constrained
community. We also controlled for community age,
defined as the number of years since the firm’s
community had been formed, until t. Finally, to
ensure that membership turnover did not reflect
mere change in the size of a community, we con-
trolled for community growth, defined as the abso-
lute change in community size from year t — 1 to ¢

Fifth, we accounted for the possible common
effects of firms’ knowledge stocks and geographical
locations on their selection into network commu-
nities and their invention outcomes. To do so, we
specified technological diversity as the extent to
which firms’ patent stocks in the same network
community were distributed over different three-
digit classes (using the Blau index). This control
yielded higher values for those communities whose
patent stocks were more diverse. The alternative
measure of technological diversity at the ego net-
work level correlated with this measure at over 0.8.
In robustness tests, using this alternative control
variable produced no changes in the results. Fur-
ther, we specified average geographical distance as
the average spherical distance (expressed in miles)
between the corporate headquarters of any two
community members.

In addition, we accounted for the dyadic commu-
nities in our data using a binary variable called
single dyadic partnership, set to 1 if a firm’s com-
munity consisted of just one dyadic partnership
and 0 otherwise. Further, we used the binary vari-
able single large partnership, set to 1 if the firm’s
community contained only a single partnership
consisting of more than two firms, and 0 otherwise
(such communities constituted about 5 percent of
our data). We also specified global network turn-
over as the degree of membership turnover at the
level of the entire industry-wide network (defined
as 1 minus the fraction of the same firms in the
network from year t — 1 to ). In line with our
previous arguments, we modeled this control as a
curvilinear effect. Coupled with the control for ego
network turnover, this effect allowed us to more pre-
cisely account for the effect of membership turnover
at the level of a firm’s network community. To control
for the possible exogenous shocks and the changes in
network size, we specified the number of community
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and network exits as the number of firms that left a
firm’s community in year f, while also leaving the
entire network in the same year. After we incorpo-
rated all the variables and controls, the effective sam-
ple included 918 firm-year observations across 192
unique computer firms.

ANALYSIS AND RESULTS

To test our predictions, we used two complemen-
tary statistical approaches. First, to control for un-
observable heterogeneity among firms and overdis-
persion in patent applications, we used negative
binomial regression with conditional firm-level
fixed effects (Hausman, Hall, & Griliches, 1984).
Because our panel was relatively short and con-
tained a large number of firms, estimation with con-
ditional fixed effects was preferred to unconditional
estimation. The latter approach could result in incon-
sistent estimates because of the incidental parameter
problem, which arises when relatively few observa-
tions are used to estimate a large number of parame-
ters (Cameron & Trivedi, 1998). Since the negative
binomial fixed-effects estimator was conditioned on
the total sum of patents for each firm, firms that
did not apply for a single patent over the entire 17-
year period were eliminated from the estimation.
This resulted in a truncation of the sample by about
20 percent, to 720 firm-year observations. Despite this
limitation, the fixed-effects estimator should remain
unbiased and consistent (Wooldridge, 2002). None-
theless, we also verified the robustness of our results
using alternative models that retained the full sample
(see robustness tests below).

Second, to account for the nested structure of our
observations within firms and within network com-
munities, we utilized a three-level Poisson model.
The analysis of variance in patent applications re-
vealed that both firm-level groups (F = 18.44, p <
.01) and community-level groups (F = 2.89, p <
.01) explained a statistically significant portion of
the variance. A multilevel model allowed us to
estimate both firm-specific and community-spe-
cific intercepts and coefficients as a function of the
respective population means plus a random vari-
ance component. Doing so helped mitigate the risks
of biased parameter estimates and incorrect estima-
tion of standard errors owing to the nested data
structure (Snijders & Bosker, 1999).

Specifically, we used a three-level Poisson model
of firm-year outcomes (level 1) with random inter-
cepts estimated for firms (level 2) and their network
communities (level 3). In addition, we also esti-

mated firm-level and community-level random co-
efficients. The firm-level random coefficients were
estimated for a firm’s prior community affiliations
(Hypothesis 2) and its interactions with average
within-community coreness (Hypothesis 3b) and
average global network reach (Hypothesis 4b). The
community-level random coefficients, in turn,
were estimated for the effect of membership turn-
over in the firm’s community (Hypothesis 1) and its
interactions with within-community coreness (Hy-
pothesis 3a) and global network reach (Hypothesis
4a). We also estimated random coefficients for com-
munity-level controls of community size, commu-
nity age, community constraint, and community’s
technological diversity, because doing so signifi-
cantly improved model fit (p < .001).

Results

Descriptive statistics and bivariate correlations
are reported in Table 1. We verified that multicol-
linearity did not pose a serious threat in our esti-
mation as the condition indices remained within
the recommended range (Belsey, Kuh, & Welsch,
1980). In Tables 2 and 3, we report the results of our
negative binomial models with firm-level fixed ef-
fects (Table 2, models 1-7) and the three-level Pois-
son models with random intercepts and random
coefficients ( models 8—14). Models 6—-7 and 13-14
represent the fully specified regressions containing
all predicted effects.

In models 1 and 8, we tested Hypotheses 1 and 2.
The results support Hypothesis 1, indicating that
membership turnover in a firm’s network commu-
nity affects the firm’s invention productivity in an
inversely curvilinear manner (see Figure 4A). Lind
and Mehlum’s (2009) test supported the presence
of effect taking an inverse U-shape (t = 1.78, p =
.04) with the inflection point at 47 percent turn-
over. Over 52 percent of the observations in our
sample fall above this inflection point. A typical
member of a moderately dynamic community (i.e.,
one that retains about 55 percent of its members
from year t —1 to t) tends to file for 19.5 percent
more patents than a member of a static community
(i.e., one that retains all of its members), and for 4.2
percent more patents than a member of a highly
dynamic community (i.e., one that retains just 30
percent of its members). Our fully specified mod-
els, 6—7 and 13-14, also support these results.

Further, models 1 and 8 also support Hypothe-
sis 2, indicating that the extent to which a firm
moves across different network communities af-
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TABLE 2
Models 1-7: Negative Binomial Regression Models with Firm-Level Fixed Effects
1 2 3 4 5 6 7
Constant 3.62 —0.64 4.03 3.40 —0.76 —0.66 0.78
(10.61) (10.79) (10.57) (10.61) (10.63) (10.79) (10.55)
Headcount® 0.10** 0.10** 0.10** 0.10** 0.09** 0.10** 0.09**
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Net income® —0.01 —0.01 —0.01 —0.01 —0.01 —0.01 —0.01
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.06)
Return on assets® —0.76 0.80 —0.97 —0.72 0.39 0.79 —0.25
(3.71) (3.78) (3.70) (3.72) (3.71) (3.79) (3.69)
R&D spending® 0.08** 0.08** 0.08** 0.08** 0.09** 0.08** 0.08**
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Degree centrality® 0.16 0.08 0.11 0.15 0.07 0.08 0.01
(0.12) (0.12) (0.11) (0.12) (0.13) (0.12) (0.11)
Ego network density® 0.26 0.13 0.30 0.26 0.03 0.13 0.12
(0.24) (0.24) (0.24) (0.24) (0.24) (0.24) (0.24)
Main component firm® —0.52* —0.62** —0.46* —0.52* —0.58** —0.61** —0.53*
(0.22) (0.22) (0.22) (0.22) (0.21) (0.22) (0.21)
Ego-network turnover® 0.46** 0.44** 0.46** 0.47%* 0.32* 0.44** 0.32*
(0.16) (0.16) (0.16) (0.16) (0.16) (0.16) (0.16)
Ego network turnover squared 0.19 0.27 0.20 0.21 0.38 0.27 0.33
(0.34) (0.34) (0.34) (0.34) (0.33) (0.34) (0.33)
Ego network growth® —0.18* —0.18* —0.21%* —0.19* —0.21** —0.18* —0.21**
(0.08) (0.08) (0.08) (0.08) (0.07) (0.08) (0.08)
Within-community coreness —0.22 —0.20 —0.22 —0.21 —0.19
(0.27) (0.27) (0.27) (0.26) (0.27)
Average within-community coreness 0.18 0.53
(0.42) (0.42)
Cross-community participation 0.54** 0.63** 0.59** 0.53*%* 0.51** 0.62** 0.60**
(0.17) (0.17) (0.17) (0.17) (0.17) (0.17) (0.16)
Community incumbent 0.30** 0.25%* 0.29** 0.30%* 0.29** 0.26** 0.27**
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
Community size 0.01 0.01 0.01 0.01 0.01 0.01 0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Community centrality 0.03% 0.03* 0.04* 0.04* 0.04** 0.03% 0.04**
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Community constraint —0.60* —0.62** —0.59* —0.63** —0.49* —0.63** —0.47*
(0.23) (0.23) (0.23) (0.23) (0.23) (0.24) (0.23)
Community age 0.012 0.01 0.01 0.01 0.02 0.01 0.02
(0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.01)
Community growth 0.01 0.00 0.01 0.01 0.01 0.00 0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Technological diversity 0.39 0.52 0.35 0.38 0.65 0.50 0.56
(0.41) (0.41) (0.41) (0.41) (0.41) (0.41) (0.41)
Average geographical distance -0.12* -0.12* -0.12* -0.11* -0.11* -0.12* -0.11*
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
Single dyadic partnership —-0.32" —-0.23 —0.42%* —0.34* -0.31" —-0.25 —0.43*%*
(0.17) (0.17) (0.16) (0.17) (0.17) (0.17) (0.16)
Single large partnership 0.22 0.29 0.21 0.20 0.25 0.28 0.23
(0.26) (0.26) (0.26) (0.26) (0.27) (0.26) (0.27)
Global network turnover 2.47** 2.50%* 2.46** 2.46** 2.36%* 2.49** 2.33%*
(0.54) (0.54) (0.54) (0.55) (0.54) (0.54) (0.54)
Global network turnover squared —28.31** —27.90** —27.91** —28.14** —23.48** —27.79** —22.75**
(7.18) (7.10) (7.11) (7.27) (7.00) (7.18) (6.95)
Community and network exits —0.09** —0.09** —0.09** —0.09** —0.09** —0.09** —0.08**
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Global network reach -3.01" -3.10" -3.03" —-2.62 -2.87
(1.65) (1.65) (1.63) (1.76) (1.75)

Continued
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TABLE 2
(Continued)
1 2 3 4 5 6 7
Average global network reach 7.44% 7.57*%
(3.13) (3.17)
Membership turnover 0.74* 0.66" 0.76* 0.75* 0.77* 0.67% 0.80*
(0.36) (0.37) (0.36) (0.37) (0.35) (0.37) (0.35)
Membership turnover squared —0.78* -0.77*% —0.81* —0.81* -0.77* —0.73* —0.82*
(0.35) (0.35) (0.35) (0.35) (0.34) (0.35) (0.34)
Prior community affiliations 0.28** 0.27** 0.30** 0.28** 0.25%* 0.27** 0.27**
(0.05) (0.05) (0.056) (0.05) (0.05) (0.05) (0.05)
Prior community affiliations squared —0.03** —0.03** —0.04** —0.03** —-0.02* —0.03** -0.02*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Membership turnover X within- 3.14* 3.007
community coreness (1.57) (1.59)
Membership turnover squared X —3.53* —3.38*
within-community coreness (1.37) (1.38)
Prior community affiliations X average 0.38 0.61*
within-community coreness (0.30) (0.30)
Prior community affiliations squared X —0.12* —0.13*
average within-community coreness (0.06) (0.06)
Membership turnover X global network —15.03 —8.84
reach (16.66) (16.71)
Membership turnover squared X global 15.18 8.90
network reach (13.75) (13.82)
Prior community affiliations X average —2.65 —2.37
global network reach (4.85) (4.91)
Prior community affiliations squared X 3.05** 3.09%*
average global network reach (1.07) (1.09)
Log-likelihood —1,989.01 —1,983.10 —1,986.46 —1,988.19 —1,977.91 —1,982.82 —1,975.19
Log-likelihood ratio test relative to 32.46** 44.28** 38.59** 34.11** 68.25%* 44.84** 73.89**

controls-only model (x*)

#n = 720. Standard errors are in parentheses.
Tp<.10
*p < .05
** p < .01
Two-tailed tests.

fects its invention productivity in an inversely cur-
vilinear manner. The firm thus benefits the most if
it moves across different network communities
with a moderate frequency (see Figure 4B). Lind
and Mehlum’s (2009) test supported the presence
of an inverse U-shaped effect (t = 2.16, p = .02),
indicating the inflection point at five prior commu-
nity affiliations. Even though this inflection point
is well within the data range, only about 2.5 per-
cent of the observations in our sample fall above
this level. Given this small number, in additional
analyses we explored whether a logarithmic speci-
fication of the firm’s prior community affiliations
could potentially provide better fit to the data.
Comparative analyses of model fit indicated, how-
ever, that the quadratic specification (AIC =
4,040.03) offers better fit than the logarithmic one
(AIC = 4,041.60). A typical firm with a moderate

rate of movement across different network commu-
nities (i.e., one with about five prior community
affiliations) thus files for approximately twice as
many patents as a firm with no prior community
affiliations. It also files for about 50 percent more
patents than a firm with nine prior community
affiliations. The results of the fully specified mod-
els 6—7 and 13-14 support these estimates as well.

In models 2-3 and 9-10, we tested Hypotheses
3a and 3b. The results consistently support Hy-
pothesis 3a, indicating that the positive effect of the
moderate rate of community membership turnover
is amplified for those firms that are located in the
core of their network community. Specifically, the
linear term of membership turnover shows a signif-
icant positive interaction with a firm’s within-com-
munity coreness (models 2 and 9). Being located in
the core of a moderately dynamic network commu-
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TABLE 3
Models 8-14: Three-Level Poisson Regression Models with Random Intercepts and Random Coefficients®
8 9 10 11 12 13 14
Constant —17.21* —18.30* —15.22F —18.39* —12.54 —18.88* —11.74
(7.29) (7.92) (8.25) (7.37) (8.39) (8.01) (8.43)
Headcount? 0.02 0.02 0.03* 0.01 0.05%* 0.02 0.05%*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Net income” -0.03 -0.02 —0.04" —0.04" —0.04" —0.03 —0.04"
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Return on assets” 6.34% 6.62* 5.51% 6.85%* 4.19 6.91% 3.93
(2.55) (2.75) (2.87) (2.58) (2.93) (2.78) (2.94)
R&D spendingb 0.10** 0.08** 0.14** 0.10** 0.14** 0.08** 0.13**
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Degree centrality® 0.55%* 0.48** 0.63** 0.54** 0.47** 0.50** 0.38%
(0.12) (0.15) 0.17) (0.12) (0.15) (0.15) (0.17)
Ego network density® 0.66** 0.64** 0.66** 0.65** 0.56* 0.63** 0.57*
(0.18) (0.21) (0.23) (0.18) (0.24) (0.21) (0.24)
Main component firm —0.23 —0.19 —0.40 0.04 —0.42 0.06 —0.49
(0.30) (0.32) (0.35) (0.30) (0.32) (0.32) (0.33)
Ego network turnover —0.00 -0.17* 0.05 —0.03 0.12 —-0.17* 0.12
(0.07) (0.08) (0.08) (0.07) (0.08) (0.08) (0.08)
Ego network turnover squared 0.72*%* 0.88** 0.90** 0.73%* 0.76** 0.84** 0.70**
(0.14) (0.16) (0.19) (0.14) (0.17) (0.17) (0.17)
Ego network growth® —0.28** —0.17** —0.29** —0.27** —0.33** —0.15** —0.27**
(0.03) (0.05) (0.06) (0.04) (0.05) (0.05) (0.05)
Within-community coreness 0.16 -0.17 0.16 0.29* —0.23
(0.14) (0.35) (0.15) (0.15) (0.34)
Average within-community coreness —0.38 0.62
(0.79) (0.61)
Cross-community participation 0.24* 0.24* 0.19 0.22* 0.38** 0.20" 0.38**
(0.10) (0.12) (0.13) (0.11) (0.11) (0.12) (0.12)
Community incumbent 0.06 0.04 0.02 0.04 0.07 0.03 0.06
(0.04) (0.04) (0.04) (0.04) (0.05) (0.04) (0.05)
Community size —0.01 0.00 —0.00 —0.03 —0.00 —0.01 —0.00
(0.02) (0.04) (0.02) (0.02) (0.02) (0.02) (0.02)
Community centrality 0.00 0.00 0.00 —0.01 0.01 —0.01 0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Community constraint —0.67** —0.58* —0.76** —0.74%* —0.52" —0.64** —0.47"
(0.23) (0.26) (0.28) (0.19) (0.27) (0.24) (0.27)
Community age —0.09* —0.08* —0.08* —0.08* —0.05 -0.07* —0.05
(0.03) (0.03) (0.04) (0.03) (0.04) (0.03) (0.04)
Community growth 0.01 0.01 0.00 0.02** 0.01 0.01* 0.00
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Technological diversity 0.28 0.62 0.43 0.01 0.63 0.38 0.49
(0.45) (0.47) (0.49) (0.58) (0.50) (0.52) (0.51)
Average geographical distance 0.07 0.07 0.09* 0.05 0.09* 0.08 0.08
(0.05) (0.05) (0.05) (0.06) (0.06) (0.06) (0.06)
Single dyadic partnership —0.51** -0.36* —0.50** —0.51** —0.70** —0.28 —0.71**
(0.14) (0.16) (0.17) (0.16) (0.16) (0.17) (0.16)
Single large partnership -0.16 —0.15 -0.31 -0.15 —0.26 -0.17 —0.26
(0.22) (0.22) (0.24) (0.21) (0.25) (0.22) (0.24)
Global network turnover 1.38%* 1.52** 1.47*%* 1.30% 2.16%* 1.51%* 2.15%*
(0.39) (0.41) (0.41) (0.53) (0.44) (0.47) (0.45)
Global network turnover squared —11.56** —10.12* —12.26** -9.63* —17.44** —9.28* —16.79**
(3.89) (4.03) (4.12) (4.86) (4.33) (4.69) (4.34)
Community and network exits —0.06** —0.07** —0.06** —0.06** —0.07** —0.06** —0.07**
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Global network reach —4.85%* —4.60** —4.88** —4.78*% —5.85%*
(1.30) (1.35) (1.48) (2.38) (2.05)

Continued
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TABLE 3
(Continued)
8 9 10 11 12 13 14
Average global network reach 4.57 5.57
(6.82) (7.05)
Membership turnover 0.98** —0.08 0.81** 1.19** 0.82** 0.08 0.82**
(0.22) (0.45) (0.24) (0.25) (0.24) (0.47) (0.24)
Membership turnover squared —1.36%* —-0.30 —1.24** —1.50** —1.16** —0.48 —1.16**
(0.24) (0.43) (0.26) (0.28) (0.26) (0.45) (0.26)
Prior community affiliations 1.06** 1.03** 1.14** 1.09** 0.79** 1.03** 0.93**
(0.16) (0.16) (0.21) (0.17) (0.17) (0.17) (0.18)
Prior community affiliations squared —0.16** —0.15** —0.16** —0.17** —0.10** —0.15** —0.14**
(0.03) (0.03) (0.05) (0.03) (0.03) (0.03) (0.04)
Membership turnover X within- 2.20* 2.13*
community coreness (0.85) (0.85)
Membership turnover? X within- —2.21%* —2.07%*
community coreness (0.74) (0.76)
Prior community affiliations X average 0.94 1.90*
within-community coreness (1.07) (0.85)
Prior community affiliations squared X —0.26 —0.41*
average within-community coreness (0.29) (0.20)
Membership turnover X global network 13.02 28.14*
reach (16.28) (14.19)
Membership turnover squared X global -13.07 —28.09*
network reach (15.31) (14.11)
Prior community affiliations X average. 18.80* 19.06*
global network reach (9.42) (9.64)
Prior community affiliations squared X —2.46 —2.37
average global network reach (2.63) (2.80)

Log-likelihood

controls-only model (x*)

—3,106.17 —3,084.93
Log-likelihood ratio test relative to 335.78** 378.27**

—3,045.00 —3,098.44 —3,021.09 —3,079.35 —3,019.27

466.08** 351.23** 547.11%* 389.41** 559.92**

#n = 720. Standard errors are in parentheses.
Y Logarithm.
Tp<.10
*p<.05
*% p < 01
Two-tailed tests.

nity thus enables a firm to file for about 5 percent
more patents than being located on the communi-
ty’s periphery (see Figure 4C). The results of our
fully specified models, 6 and 13, are consistent.
Results, however, provide only partial support for
Hypothesis 3b. While the prediction of a positive
interaction between a firm’s prior community affil-
iations and its average within-community coreness
is not supported by our partial models, 3 and 10, it
is supported by our fully specified models, 7 and
14. Based on the estimates of model 7, Figure 4D
demonstrates an interesting nuance to our original
prediction: a noticeable shift occurs in the inflec-
tion point in the effect of prior community affili-
ations for core firms, from five to three commu-
nities. These results hint at the significant costs
of entering multiple network communities as a

core member, a condition that can exacerbate the
cost of integration and create stronger ambiguity
in a newcomer’s collaborative profile (Zucker-
man et al., 2003). These circumstances, in turn,
can overwhelm the benefits of accessing new in-
vention inputs for core firms as they move across
an increasing number of network communities.
Peripheral members, in contrast, seem to be more
immune to these risks. Those having zero to five
prior community affiliations register noticeably
lower levels of invention productivity than core
firms, but peripheral members with more com-
munity affiliations (five to nine) enjoy superior
invention benefits, which are coupled with a
higher inflection point.

Finally, our results do not support Hypotheses 4a
and 4b. These predict that lower global network
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reach will help maintain greater knowledge heter-
ogeneity across different network communities,
thus creating additional invention benefits to firms
with moderate levels of membership turnover and a
moderate number of prior community affiliations.
In contrast to our expectations, negative binomial
models (6 and 7) demonstrate null effects for the
respective interactions. The multilevel Poisson
models (12 and 13), in turn, provide estimates that
are opposite to our expectations (see Figure 4C and
4F). Although—given the lack of consistency
among these distinct estimation approaches—the
results of these models should be interpreted with
caution, they could point to a more complex rela-
tionship between global network reach, network
community dynamics, and firms’ invention pro-
ductivity. Specifically, this relationship could en-
tail not only the heterogeneity of knowledge across
communities, but also the degree to which knowl-
edge can be absorbed and integrated by firms as a
function of increasing global network reach.
Overall, the results support our theory. We find
that a firm’s invention productivity benefits the
most from moderate community dynamics,

Membership Turnover

Prior Community Affiliations

which can entail the necessary updates to the
knowledge base in the firm’s community. This
can happen either indirectly, through community
membership turnover, or directly, through the firm’s
movement across different network communities.
Furthermore, we find that firms located in the core of
their network community can most effectively capital-
ize on the benefits of moderate membership turnover
and moderate levels of prior community affiliations.

Robustness Tests

To ensure robust results, we conducted a range of
additional tests. First, we explored a key alternative
explanation for our findings. It could be that both a
community’s membership turnover and a firm’s
movement across different network communities
are driven by the firm’s new alliance formations (cf.
Koka, Madhavan, & Prescott, 2006). Specifically, a
greater prior propensity of a firm to form new alli-
ances could boost both the member turnover in the
firm’s community and the firm’s likelihood of mov-
ing to another community. While, in our main anal-
ysis, we controlled for a firm’s degree centrality
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and changes in it, in additional analyses we also
modeled the rate of membership turnover in its
community from year t to t + 1 and its likelihood of
moving to another community in f + 1 as a function
of new partnerships formed by the firm in year t.
Results indicated a weak negative effect of prior
ties on the subsequent rate of community member-
ship turnover and no significant effect on a firm’s
movement across different network communities,
thus lending no support to the alternative explana-
tion. From a conceptual standpoint, these results in-
dicate that the observed community dynamics are
substantially driven by the behaviors of other firms in
the network, rather than the firm’s own collaborative
pursuits (cf. Ozcan & Eisenhardt, 2009). We also reran
all our models while controlling separately for the
firm’s new partnerships in year t.

Second, we explored the sensitivity of our results
to alternative ways of constructing the interorgani-
zational network. While in the main analysis we
modeled interorganizational ties as lasting for
five years, in additional analyses we set the duration
of ties to three, four, six, and seven years. In addi-
tion, we applied a set of alternative specifications
(40, 50, and 60 percent) for the minimum fraction
of firms that an evolving network community
needed to preserve across two contiguous years.
Our results remained substantively unchanged in
these tests.

Third, we explored whether the study’s observa-
tion period from 1981 to 2001 captured the evolu-
tion of the interorganizational network in the com-
puter industry from its very inception. To do so, we
tracked the MERIT-CATI data all the way back to
the 1960s. Our observations indicated that prior to
the 1980s, the industry network was generally very
small and sparse, containing only a handful of
firms and ties. It was not until 1985 that this net-
work developed a robust main component with
some community structure. To verify this finding
analytically, for all annual networks from the early
1980s and the 1990s we estimated the percolation
threshold, or the probability of finding a large main
component (Newman & Watts, 1999). We found
that the average percolation threshold in 1985-—
2001 was three times greater than in 1980—84, and
about ten times greater than in 1960-79. To ensure
that these findings were not unique to MERIT-
CATI, we also verified them using data from SDC
Platinum and obtained very similar results. Further-
more, to verify the sensitivity of our results to the
possibility of missing partnership data, we performed
a series of tests by removing up to 50 percent of the

ties in each year at random. Even after such extreme
manipulations, we found that the overall structure of
network communities remained unchanged.®

Fourth, we explored the risk of right-censoring in
our patent data. Our data covered all patents filed
from 1986 to 2002 and approved by the end of
2006. For the 143,500 patents in our sample, the
mean duration of the review process at the USPTO
was about 3.17 years. This average duration was
consistent over firms, network communities, and
the entire 17-year observation period. Given this
finding and the 4-year lead period with respect to
the data used in this study, right-censoring was
unlikely to have posed a problem. Nevertheless, to
verify this conclusion, we extended the lead period
to 5 and 6 years, respectively, by truncating patent
data first in 2001 and then in 2000. We also ex-
plored whether accounting for differences in patent
quality could affect our estimates. To do so, we
weighted each patent by its forward citations. This
measure correlated with firms’ raw patent count at
0.9. Finally, rather than capturing the patents filed
in year t + 1, we counted the patents filed within 2
and 3 years from ¢, respectively. Our statistical re-
sults remained robust to these modifications.

Finally, we verified our statistical results using
other estimation techniques. While the negative bi-
nomial regression model used in our main analysis
can effectively deal with the issue of overdisper-
sion in the dependent variable, it can also lead to
biased estimates should data suffer from autocorre-
lation or distributional misspecification. We there-
fore reestimated our models using firm-level fixed-
effects Poisson estimates (Cameron & Trivedi,
1998). In addition, to ensure that sample truncation
did not affect our results, we ran a series of ordinary
least squares (OLS) models on the logged dependent
variable. In contrast to the maximum-likelihood esti-
mator, which eliminates all firms with a constant zero
outcome, the fixed-effects OLS estimator allows for
retaining these firms in the estimation. The results of
these additional tests were similar.

DISCUSSION

Departing from prior research that has applied
either the ego network or the global network per-

8 This result also echoes some prior findings on the
general robustness of social and interorganizational net-
works to random data omissions (Kossinets, 2006; Schil-
ling, 2009).
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spective to analyze the implications of social struc-
ture for the creation of knowledge, this study has
examined the implications of network communi-
ties for the invention productivity of firms in the
computer industry. Two factors motivated our fo-
cus on network communities. First, since more het-
erogeneous inputs are likely to be located in the
space between rather than the space within net-
work communities, the boundaries of these com-
munities and the regions of high network density
that they delineate can help scholars evaluate the
heterogeneity of critical knowledge inputs for
firms’ invention activities. With respect to this ar-
gument, the community perspective offers a set of
novel and unique theoretical insights that go be-
yond the findings of prior work that has utilized
either the ego network or the global network per-
spective. This is because those two perspectives
draw on different markers for understanding the
distribution of knowledge in social systems, and
neither of them can adequately account for the
structure and dynamics of network communities
among firms.

Second, since network communities are charac-
terized by shorter network distances and lower
transaction costs of exchange, locally available in-
puts are more easily accessible to firms than are
inputs located elsewhere in a global network. But
the fact that these inputs are locally accessible yet
globally isolated, and thus are likely homogeneous,
effectively generates a puzzle, in that communities
can both enable and constrain firms’ invention pro-
ductivity. We have attempted to resolve this puzzle
by focusing on how the dynamics of firms’ move-
ment across network communities can help update
the local knowledge base of a community, thus
offering the joint benefits of easy access and diverse
local knowledge to its members.

Toward this end, our study produced three key
findings. First, we found that the computer indus-
try community’s membership turnover, defined as
changes in its internal composition over time, had
an inversely curvilinear effect on the invention pro-
ductivity of the member firms. Specifically, a mod-
erate rate of membership turnover enhanced the
member firms’ invention outcomes by updating the
community’s knowledge base, thus conferring an
advantage over members of more static communi-
ties. Extreme levels of membership turnover, how-
ever, constrained member firms’ invention produc-
tivity, most likely by increasing the risks and costs
of collaboration and thereby eroding the collabora-
tive base of the community. Second, we found that

a firm’s movement across different communities
over time had an inversely curvilinear effect on its
invention productivity. Hence, while some mobil-
ity can be necessary to ensure exposure to diverse
knowledge inputs, excessive movement can in-
crease the costs of integrating these new inputs and
adjusting to new environments. Finally, our results
indicate that not all members of a given network
community benefit equally from the effects of
membership turnover. Specifically, our results in-
dicate that members located in the core of their
network community can claim greater benefits
from moderate levels of membership turnover in
that community than those located on its periph-
ery. This result suggests that core firms may have
quicker, broader, and generally more efficient ac-
cess to the local knowledge base of their network
community as it is updated by firms arriving from
outside of it. With respect to prior community af-
filiations, our results indicate that firms’ lower at-
tachment to network communities seems to allow
for greater promiscuity, which enables the firms’
invention productivity. Put differently, our results
point to an interesting tension between the costs
and benefits of (a) deep integration and search
across only a few network communities as a core
member and (b) a quick scan and peripheral entry
into numerous network communities.

Our research and findings offer several contribu-
tions to organization theory. First, by emphasizing
the role network communities play in demarcating
the boundaries of homogeneous knowledge inputs,
the results of this study advance understanding of the
relationship between networks and firms’ invention
activities beyond that facilitated by findings under
both the ego network perspective (Ahuja, 2000; Za-
heer & Soda, 2009) and the global network perspec-
tive (Schilling & Phelps, 2007; Uzzi & Spiro, 2005).
More importantly, we demonstrate that the mem-
bership dynamics of network communities, and the
knowledge updates they entail, can have funda-
mental implications for firms’ invention outcomes.
This finding, therefore, casts doubt on the unifor-
mity of the recent conclusion that only ego net-
works matter for actor outcomes (Burt, 2007). It also
suggests that future studies applying the ego net-
work perspective could pay closer attention to
whether an ego’s alters are located in the same
network communities or different ones, since these
structural distinctions critically shape the diversity
of the alters’ knowledge and information.

Our second contribution lies in explicating how
the perspective on network communities helps un-
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cover some novel ways in which global networks
can evolve and in which actors’ individual network
positions can change over time. This, in turn, offers
a direct contribution to the studies of network dy-
namics (Gulati & Gargiulo, 1999; Shipilov & Li,
2012; Zaheer & Soda, 2009). One key aspect of this
contribution is related to recognizing membership
dynamics in networks as an influential dimension
of network change. Our study suggests that the
turnover of community members in a firm’s net-
work community and the firm’s movement across
different communities can provide critical access
to heterogeneous knowledge and resources. Even
more intriguingly, we find that the behaviors of
other firms in a network—rather than a firm’s own
pursuits—significantly drive observed community
dynamics. This finding, in turn, suggests a more
balanced view (cf. Burt, 1992) of the sources of
variation in network positions, wherein individual
agency may be significantly constrained. It also
points to the importance of considering changes in
a broader network structure for understanding the
antecedents of individual network positions.
Third, our study shows that the properties of ego
networks interact with the key features of network
communities to shape actors’ behaviors and out-
comes. In doing so, our research takes a step toward
a more integrative, multilevel approach to the rela-
tionship between network structures and actors’
behaviors and outcomes (Brass, 2011). In our case,
using such an integrative approach not only helps
to establish a more comprehensive link between
the properties of their global network and firms’
invention outcomes, but also provides for a more
precise identification of the sources of knowledge
heterogeneity in an interorganizational system.
Finally, the perspective on network communities
advanced in this study can also contribute to a
number of related lines of research. For example,
studies of industrial districts and regional econo-
mies (Buhr & Owen-Smith, 2011; Lazerson & Loren-
zoni, 1999) could benefit from exploring how net-
work communities form and evolve, interlinking
firms both within and between districts. Such in-
vestigations could shed light on how social struc-
tures shape local productivity and invention out-
put by raising or lowering the costs of economic
exchange within and across geographical locales,
as well as by either enabling or constraining knowl-
edge flows. Similarly, there is promise in examin-
ing how an industry structure analysis that simul-
taneously decomposes an industry into network
communities of collaborators and groups of rivals

could inform a range of organizational outcomes
(Thomas & Pollock, 1999). For example, one can
envision various configurations and dynamics in
an industry that are such that, at any given time, the
space between network communities can be popu-
lated by firms with various degrees of rivalry rela-
tionships (Sytch & Tatarynowich, in press). Such
multidimensional space could allow for a deeper
analysis of the flows of knowledge, information,
and other resources in the industry. Adding a cog-
nitive lens to the study of this multidimensional
space (Porac, Thomas, & Baden-Fuller, 1989; Porac,
Thomas, Wilson, Paton, & Kanfer, 1995) could ad-
vance researchers’ understanding beyond that at-
tained via this study’s focus on firms’ inventions.
To be specific, future research could fruitfully
study a wide range of firms’ strategic actions and
outcomes by examining the perceptions of collab-
oration and rivalry held by firm executives and by
influential third parties (such as financial analysts).

Another promising direction for future work
would entail a more systematic analysis of how
firm-level attributes interact with the membership
dynamics of network communities highlighted in
this study (see e.g., Shipilov, 2006). In our addi-
tional analyses, we found that more profitable firms
(as indicated by higher ROA) tended to reap the
greatest invention benefits from moderate levels of
membership dynamics. Other research suggests
one possible mechanism underlying this effect:
since profitable firms can have a more favorable
bargaining position (Lavie, 2007), they may also be
able to appropriate greater value from within-com-
munity relationships, perhaps at the expense of
less successful community members. Taken to-
gether with our main findings, these results thus
contrast with the findings of some earlier research
pertaining to business groups, such as keiretsus in
Japan. They suggest that, rather than playing the
redistributive role common in a keiretsu (Lincoln,
Gerlach, & Ahmadjian, 1996), network communi-
ties tend to increase inequality by allowing rich
firms and firms in their cores to get even richer.
These findings thus indicate some early promise
for additional research in this area.

In closing, it is important to note that our theory
and results are tailored to the analysis of sparsely
connected interorganizational systems, where net-
work communities typically do not overlap with
one another. It is in part the lack of overlap and the
sparse connectivity among the network communities
that sustains the heterogeneity of knowledge and re-
sources among them. Extending the analysis to sys-
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tems with overlapping network communities and
those in which actors could be members of more than
one community at a time could generate fruitful novel
insights. Furthermore, our theory and results involve
an important and rather straightforward boundary
condition. The application of the network commu-
nity lens to the study of interorganizational systems is
contingent on the presence of a robust structure of
network communities. While a strong community
structure often characterizes interorganizational and
interpersonal settings (e.g., Baum, Rowley, & Shipi-
lov, 2004; Davis et al., 2003; Shipilov & Li, 2012;
Sytch et al., 2012), strong community structure is not
the case uniformly. To the extent that the global net-
work resembles a random network in its properties,
or displays a strong core/periphery structure, the ap-
plication of the network community lens is limited.

Nevertheless, whenever the network community
structure is found to be present, applying the net-
work community perspective could open up new
avenues for analyzing a wider spectrum of indus-
trial and national contexts. For example, while
some economies are organized around business
groups (i.e., cohesive agglomerations of firms tied
by economic relationships or governance control
[see, e.g., Carney, Gedajlovic, Heugens, Essen, &
Oosterhout, 2011; Lincoln et al., 1996]), not all
industrial and national domains feature such
groups. Many business groups, such as Japanese
keiretsus and Korean chaebols, are also unique in
that they incorporate exchange partners and financ-
ing entities, have strong institutional support
mechanisms, and display remarkable stability in
affiliation patterns. Some theorists have thus con-
cluded that these groups have no real counterparts
in Western economies (e.g., Lincoln et al., 1996:
71). We believe, therefore, that a focus on network
communities would allow for a more inclusive
analysis and offer exciting opportunities for future
research addressing a broader range of industrial,
national, and institutional systems.
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